JAMIA HAMDARD

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CBCS ENABLED SYLLABUS MASTER OF TECHNOLOGY COMPUTER SCIENCE & ENGINEERING WITH SPECIALIZATION DATA SCIENCES

SYLLABUS FOR MASTER OF TECHNOLOGY COMPUTER SCIENCE & ENGINEERING WITH SPECIALIZATION DATA SCIENCES Choice Based credit system (CBCS) Approval Date: 26th June 2022

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

JAMIA HAMDARD

Deemed to be University

Accredited in 'A' Grade by NAAC

Declared to be designated as Institute of Eminence (IoE) by MHRD, GOI,

New Delhi -110062

www.Jamiahamdard.edu.in

JH/CSE/AICTE/CBCS/MTCSE-DS/2022-23

PROGRAMME NAME: MASTER OF TECHNOLOGY COMPUTER SCIENCE & ENGINEERING WITH SPECIALIZATION DATA SCIENCES

PROGRAME CODE: 557

ACADEMIC SESSION OF INTRODUCTION OF THE PROGRAMME: (2022-23)

SCHOOL NAME: SEST

DEPARTMENT NAME: COMPUTER SCIENCE & ENGINEERING

APPROVAL DATE OF THE BOARD OF STUDIES (BOS) MEETING FOR THE PRESENT SYLLABUS 26 JUNE 2022

APPROVAL DATE NUMBER OF ACADEMIC COUNCIL OF MEETING FOR THE PRESENT SYLLABUS

ADMISSION & EXAMINATION BYE-LAWS

FOR

MASTER OF TECHNOLOGY COMPUTER SCIENCE & ENGINEERING with specialization in DATA SCIENCES M.Tech. (CSE-DS)

Program Code: 557

CHOICE BASED CREDIT SYSTEM (CBCS) (W.E.F. 2022-23)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING School of Engineering Sciences& Technology JAMIA HAMDARD (DEEMED TO BE UNIVERSITY) Hamdard Nagar, New Delhi-110 062 Ph. 011 26059688, Extn.-5858

JH/CSE/AICTE/CBCS/MTCSE-DS/2022-23

CONTENTS

Торіс	Page Number
Approval date of the BOS meeting for the present syllabus: Approval date and number for the Academic Council meeting for the present syllabus	3
Vision Statement	4
Mission Statement	4
Program Educational Objectives	4
Program Outcomes (PO)	5
Program Specific Outcomes (PSO)	6
Objective of the M.Tech. programme in Computer Science and Engineering with Specialization in Data Science	7
Program Structure	8
Mode of curriculum delivery	14
Attendance	14
Internal Assessment	15
Semester Examination	16
Dissertation	16
Examination	17
Promotion Scheme	17
Calculation Of SGPA and CGPA of a Student In a Semester	18
Classification of successful candidates	18
Detailed Curriculum	19

• Approval date of the BOS meeting for the present syllabus:

Approval date and number for the Academic Council meeting for the present syllabus

Name of Programme	Programme Code	Date of Revision
M.Tech (CSE-DS)	557	02.11.2018

SCHOOL OF EGINEERING SCIENCES AND TECHNOLOGY

Vision Statement (School Level): To become the best institution in the national and international map in terms of quality of teaching and research, technical knowledge and academics in the field Computer Science & Engineering, Electronics & Communication Engineering, Bioinformatics with sincere honesty adding values in the core aspect of students' life.

Mission Statements (3 to 4) (School Level):

MS1: To offer state-of-the-art undergraduate, postgraduate and doctoral programs in Computer Science & Engineering, Electronics and Communication Engineering & Engineering and Bioinformatics.

MS 2: To provide one of the best working environments to motivate faculty and students to work towards vision of the Department.

MS 3: To develop association with industry, other Universities/Institute/Research Laboratories and work in collaboration with them.

MS 4: To use our expertise in all the relevant disciplines for helping society in solving its real life problem.

MS 5: To develop entrepreneurship skills in the students so that they can become problem solver and innovative developer and contribute to the society by providing employment to others.

PROGRAM EDUCATIONAL OBJECTIVES

Upon the completion of Academic Programme (M.Tech. CSE), students will be able –

PEO 1: To prepare professionals who will have successful career in industries, academia, research and entrepreneurial endeavours.

PEO 2: To prepare graduates who will demonstrate analytical, research, design and implementation skills offering techno-commercially feasible and socially acceptable solutions to real life problems.

PEO 3: To prepare graduates who will thrive to pursue life-long learning and contribute to society as an ethical and responsible citizen.

Mapping Program Educational Objectives (PEOs) with Mission Statements (MS)

	MS-1	MS-2	MS-3	MS-4	MS-5
PEO-1	3	2	2	2	2
PEO-2	2	3	2	3	3
PEO-3	3	2	2	2	3

Write '3' in the box for 'high-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level' mapping.

PROGRAM OUTCOMES

At the end of the program a student is expected to have:

- PO1: An understanding of the theoretical foundations and the limits of computing.
- PO2: An ability to adapt existing models, techniques, algorithms, data structures, etc. for efficiently solving problems.
- PO3: An ability to design, develop and evaluate new computer-based systems for novel applications which meet the desired needs of industry and society.
- PO4: Understanding and ability to use advanced computing techniques and tools.
- PO5: An ability to undertake original research at the cutting edge of computer science & its related areas.
- PO6: An ability to function effectively individually or as a part of a team to accomplish a stated goal.
- PO7: An understanding of professional and ethical responsibility.
- PO8: An ability to communicate effectively with a wide range of audience.
- PO9: An ability to learn independently and engage in lifelong learning.
- PO10: An understanding of the impact of IT related solutions in an economic, social and environment context.
- PO11: Develop robust, reliable, scalable techniques and tools for knowledge-based systems.
- PO12: Communicate effectively, write and present technical reports on complex engineering activities by interacting with the engineering fraternity and with society at large.

PROGRAMME SPECIFIC OUTCOMES:

PSO 1: Students should be able to engage in sustainable development and demonstrate data analysis skills for effective interpretation and decision making to solve real life problems.

PSO 2: Students should be able to apply ethical principles and commit to professional and social responsibilities.

	PEO-1	PEO-2	PEO-3
PO-1	3	3	2
PO-2	3	3	1
PO-3	3	2	2
PO-4	2	3	2
PO-5	3	2	2
PO-6	2	3	3
PO-7	2	3	3
PO-8	2	3	2
PO-9	1	2	3
PO-10	2	2	1
PO-11	3	2	3
PO-12	1	2	3
PSO-1	3	2	3
PSO-2	2	3	2

Mapping of Program Outcomes (POs) and Program Specific Outcomes (PSOs) with Program Educational Objectives (PEOs)

Mapping of Program Specific Outcomes (PSOs) where applicable.

Write '3' in the box for 'high-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level' mapping.

ADMISSION & EXAMINATION RULES for MASTER OF TECHNOLOGY (Computer Science & Engineering with Specialization in Data Sciences)

M. Tech. (CSE) with specialization in Data Sciences (M. Tech. (CSE) – DS) Program has been offered by the Department of Computer Science & Engineering.

1. PROGRAM OBJECTIVE

To prepare highly skilled professionals with a strong conceptual, theoretical& practical proficiency and research ability in the field of Computer Science & Engineering and related emerging areas; such as Data Sciences, Big Data Analytics, Information Security, and Cyber Forensics.

2. THE PROGRAM

Highlights of the program are described in the following table:

a.	Name of the Program	M. Tech. (CSE) with specialization in <i>Data Sciences</i> M. Tech. (CSE – DS)
b.	Nature	Regular and Full Time
c.	Duration	Two Years (4 Semesters)
d.	Total number of credits	78
e.	Medium of Instruction and	English
0.	English Examinations	Lightsh
f.	Eligibility Criteria	Passed B.Tech./BE or equivalent degree in Computer Science/Computer Science & Engineering/Computer Engineering/ Information Technology/Software Engineering/ ICT with atleast55% marks (or equivalent CGPA) in aggregate
		(OR)
		MCA or in M.Sc in IT/Computer Science/Information Science & Technology/Electronics/Software Engineering or equivalent degree with atleast55 % marks (or equivalent CGPA) in aggregate .
		(OR)
		B.Tech. / B.E. or equivalent degree in Electronics & Communication / Electronics Engineering / Electrical Engineering with atleast55% marks (or equivalent CGPA) in aggregate.
g.	Selection procedure	As per the merit of the qualifying examination
h.	Total Seats	30 in each program; inclusive of seats reserved for NRI / sponsored candidates; additional seats are available for Foreign Nationals.
i.	Period of Completion	Not more than 04 years (8 Semesters)
j.	Commencement of the Program	July of the every academic session

3. PROGRAM STRUCTURE

Semester-wise program structures, guidelines for teaching, practical and associated assessments of **M. Tech. CSE-DS**program are described in the following tables:

Program Summary

Course Type	Abbreviation	Credits
Program Core	PC	16
Program Elective	PE	20
Open Elective (OE)	OE	4
Research Methodology & IPR	RMIPR	2
Audit Course	AC	0
Laboratory	LAB	8
Mini Project with Seminar	MPS	2
Dissertation	DISS	26
Total Credits	78	

Semester – I

		Course	Marks			LTD	
Course Code	Course Title	Туре	Internal Assessment	Semester Exam	Total	L-T-P	Credits
MTDS 101	Mathematical Foundations of Computer Science	РС	40	60	100	3-1-0	4
MTDS 102	Advanced Data Structures	РС	40	60	100	3-1-0	4
	Program Elective – I	PE	40	60	100	3-1-0	4
	Program Elective – II	PE	40	60	100	3-1-0	4
MTDS 103	Research Methodology & IPR	RMIPR	40	60	100	2-0-0	2
	Audit Course – I	AC	40	60	100	2-0-0	0

MTDS 104	Lab–I (Advanced Data Structures)	LAB	40	60	100	0-0-4	2
MTDS 105	Lab – II (Based on Elective II)	LAB	40	60	100	0-0-4	2
Total					800	16-4-8	22

L-T-P stands for number of contact hours as Lecture-Tutorial-Practical in a week.

Semester – II

Course Code	с. тч	Course	Marks					
Course Code	Course Title	Туре	Internal Assessment	Semester Exam	Total	L-T-P	Credits	
MTDS 201	Advanced Algorithms	РС	40	60	100	3-1-0	4	
MTDS 202	Soft Computing	РС	40	60	100	3-1-0	4	
	Program Elective – III	PE	40	60	100	3-1-0	4	
	Program Elective – IV	PE	40	60	100	3-1-0	4	
	Audit Course – II	AC	40	60	100	2-0-0	0	
MTDS 203	Lab – III (Based on Advanced Algorithm and Soft Computing)	LAB	40	60	100	0-0-4	2	
MTDS 204	Lab – IV (Based on Electives III)	LAB	40	60	100	0-0-4	2	
MTDS 205	Mini Project with Seminar ^{@ #}	MPS	40	60	100	2-0-0	2	

Total	800	16-4-8	22	
-------	-----	--------	----	--

*Students be encouraged to go to Industrial Training/Internship for at least 2-3 months during semester break.

Semester – III

	Comment Title	Course	Marks				
Course Code	Course Title	Туре	Internal Assessment	Semester Exam	Total	L-T-P	Credits
	Program Elective – V	PE	40	60	100	3-1-0	4
	Open Elective	OE	40	60	100	3-1-0	4
MTDS 301	Dissertation – I//Industrial Project ^{@#}	DISS	200	100	300	0-0-20	10
	Total						18

*Students going for Industrial Project/Thesis will complete these courses through MOOCs.

Semester-IV

Course	Course Title	Course Type	Marks			ітр	Cuadita
Code			Internal Assessment	Semester Exam	Total	L-T-P	Credits
MTDS 401	Dissertation – II ^{@#\$}	DISS	300	200	500	0-0-32	16

Grand Total of Credits = 78

a Dissertation/Mini Project shall be based on latest research topics in the broad area of research from the domain of Data Sciences.

- # Students are required to get approval of their title of Dissertation/Mini Project by Dissertation Assessment & Evaluation committee constituted by HOD. Supervisor of respective students must be member of the above committee. Students are required to give at least two presentations/seminars for progress monitoring & assessment purpose to their respective supervisors. Viva-voce will be held only after the submission of completion report duly signed by the supervisor of the respective student. A plagiarism report duly signed by the students are mandatory to submit in compliance with UGC (Promotion of Academic Integrity and Prevention of Plagiarism in Higher Educational Institutions) Regulations, 2017 (or any such regulations notified time to time) by competent authority.
- \$ Students are required to publish at least one article related to their work of Dissertation in SCI/SCIE/Scopus indexed or UGC approved International Refereed Journal/International Conference. Acceptance of paper is a must for viva voce to be held, but the degree will be awarded only on proof of publication verified by the supervisor In any case consent of the Supervisor is mandatory for publication. Before submitting the paper Student MUST take the consent of their respective supervisor.

Course Code	Course Title		Marks		L-T-P	Credits	
		Internal Assessment	Semester Exam	Total			
		Program Elect	ive – I				
MTDS PE111	Data Science	40	60	100	3-1-0	4	
MTDS PE112	Distributed Systems	40	60	100	3-1-0	4	
MTDS PE113	Data Preparation & Analysis	40	60	100	3-1-0	4	
		Program Electi	ve – II	•			
MTDS PE121	Recommender System	40	60	100	3-1-0	4	
MTDS PE122	Machine Learning	40	60	100	3-1-0	4	
MTDS PE123	Data Storage Technologies & Networks	40	60	100	3-1-0	4	
		Program Electiv	ve – III	•		•	
MTDS PE231	Knowledge Discovery	40	60	100	3-1-0	4	
MTDS PE232	Big Data Analytics	40	60	100	3-1-0	4	
MTDS PE233	Data Warehousing & Data Mining	40	60	100	3-1-0	4	
		Program Electiv	ve – IV	•			
MTDS PE241	Pattern Recognition	40	60	100	3-1-0	4	
MTDS PE242	Web Analytics & Development	40	60	100	3-1-0	4	
MTDS PE243	MOOCs 1	40	60	100	3-1-0	4	
	· · · · · · · · · · · · · · · · · · ·	Program Electi	ve – V	·	·	·	
MTDS PE351	Cloud Computing	40	60	100	3-1-0	4	
MTDS PE352	Distributed Database	40	60	100	3-1-0	4	
MTDS PE353	MOOCs 2	40	60	100	3-1-0	4	

PROGRAM ELECTIVES (PE) for M.TECH. (CSE-DS) PROGRAM

* The list of online courses to be cleared through MOOCs shall be floated in the respective semester after approval from the Board of Studies with a provision for in house examination.

L-T-P **Paper Code** Title of the Paper Marks Credits Internal Semester Total Assessment Exam **Open Elective** MTDS OE311 **Business Analytics** 100 3-1-0 60 4 40 MTDS OE312 Block chain Design And 40 60 100 3-1-0 4 Their Use Cases MTDS OE313 **Operation Research** 40 100 60 3-1-0 4 MTDS OE314 Cost Management of 40 60 100 3-1-0 4 Engineering Projects MTDS OE315 Internet of Things 40 60 100 3-1-0 4 Numerical Methods MTDS OE316 40 60 100 3-1-0 4

OPEN ELECTIVES (OE) COMMON FOR ALL M.TECH. PROGRAMS

AUDIT COURSE (AC) COMMON FOR ALL M.TECH. PROGRAMS

Paper Code	Title of the Paper		Marks		L-T-P	Credits
		Internal	Semester	Total		
		Assessment	Exam			
	Au	ıdit Course – I				
MTDSAC111	English for Research Paper Writing	40	60	100	2-0-0	0
MTDS AC112	Disaster Management	40	60	100	2-0-0	0
MTDS AC113	Pedagogy Studies	40	60	100	2-0-0	0
	Au	dit Course – II				
MTDS AC221	Constitution of India	40	60	100	2-0-0	0
MTDS AC222	Value Education	40	60	100	2-0-0	0
MTDS AC223	Personality Development through Life Enlightenment Skills	40	60	100	2-0-0	0

4. MODE OF CURRICULUM DELIVERY

Mode of curriculum delivery includes classroom teaching, assignments, test, lab work, presentations, participation in relevant events and regularity.

5. ATTENDANCE

- a. All students are supposed to attend every lecture and practical classes. However, the attendance requirement for appearing in the examination shall be a minimum of 75% of the classes held.
- b. Each one-period teaching shall account for one attendance unit.
- c. The concerned teacher will take a roll call in every scheduled class, maintains and consolidate the attendance record, which would be submitted to the Head of the Department at the conclusion of the semester.
- d. Attendance on account of participation (with prior permission from the Head of the Department) in the co-curricular/extra-curricular activities can be granted by the Dean on receipt of certificates or recommendations of the respective activity issued by the Head of the Department.
- e. Attendance records displayed on the Notice Board from time to time, in respect of short attendance, shall be deemed to be a proper notification and no individual notice shall be sent to the students/local guardian.
- f. In case a student is found to be continuously absent from the classes without information for a period of 30 days, the concerned teacher shall report it to the Head of the Department.
- g. Head of the Department may recommend for striking off the name of a student from rolls, after ensuring '<u>one month continuous absence</u>', from all the concerned teachers.
- h. A student, whose name has been struck off on account of long absence may apply to the Dean for readmission within 15 days of the notice of striking off the name. The readmission shall be effected on payments of prescribed readmission fees.
- i. A student with less than 75% attendance in a subject shall not be allowed to appear in that subject in the semester examination. The Head of the Department shall recommend all such cases to the Dean of the School.
- j. The Dean, on the recommendation of the Head of the Department, may consider the relaxation of attendance up to 10% on account of sickness and /or any other valid reason. No application for relaxation of attendance (duly certified by a Registered Medical Practitioner/Public hospital or a competent authority) will be entertained after 15 days from the recovery from illness etc.

6. INTERNAL ASSESSMENT

- a. Internal assessment, to be made by concerned teachers, will be based on unit tests, quizzes, presentation, programming test, demonstrations and assignments.
- b. There will be two (2) Internal Assessment (Unit Tests) with a total of 30 marks(each of 15 marks each). Other modes of assessment (Assignment, attendance, etc) shall account for remaining 10 marks.
- c. Dates for unit tests will be announced at the beginning of the semester, by the examination coordinator.
- d. The teacher concerned shall maintain a regular record of the marks obtained by students in minor tests and display the same in due course.

- e. The concerned teachers shall submit the compiled internal assessment marks to the Head of the Department, on the conclusion of teaching of the current semester.
- f. The Head shall display a copy of the compiled sheet, of internal assessment marks of all the papers, before forwarding it to the Controller of Examination, i.e. at the conclusion of the semester.
- g. A promoted candidate, who has to reappear in the examination of a paper, will retain internal assessment marks.
- h. In the case of re-admission, the candidates shall have to go through the internal assessment process afresh and shall retain nothing of the previous year.

7. SEMESTER EXAMINATIONS

Prescriptions for conducting semester examinations of theory and lab papers, those shall be conducted after the conclusion of each of the semesters, are presented in the following table:

S.N.	Classification	Theory	Lab
1.	Mode	Written Only	Written, Demo, Programming and
			viva- voce etc.
2.	Duration	02 Hours 30 minutes	03 Hours
3.	Total Marks	60 (Sixty Only)	60 (Sixty Only)

8. **DISSERTATION**

- a. Each student of the final semester will have to go for a Research based Dissertation work either in the industry or in the Department under the guidance of one or two faculty members.
- b. Dissertation shall be based on latest research topics. In case of Specialization in Data Sciences, the broad area of research shall be from the domain of Data Sciences.
- c. Students are required to get approval of their title of Dissertation by Dissertation Assessment & Evaluation committee constituted by HOD. Supervisor of respective students must be member of the above committee. Students are required to give atleast three presentations for progress monitoring & assessment purpose to their respective supervisors. Viva-voce will be held only after the submission of completion report duly signed by the supervisor of the respective student. A plagiarism report duly signed by the students are mandatory to submit in compliance with UGC (Promotion of Academic Integrity and Prevention of Plagiarism in Higher Educational Institutions) Regulations, 2017 (or any such regulations notified time to time) by competent authority.
- d. Students are required to publish atleast one article related to their work of Dissertation in UGC approved International Refereed Journal/International Conference. Before submitting the paper Student **MUST** take the consent of their respective supervisor.

- e. A supervisor will be allocated to every student for dissertation work as decided by the Dissertation Committee of the Department.
- f. All the students, who are pursuing the Dissertation work, shall be continuously in touch with the internal supervisor.
- g. <u>There shall be two presentations by the students for evaluation of the progress</u> and the internal supervisors will conduct it. However, an internal supervisor may ask the student to submit a confidential progress-report from the external supervisor (*if any*).
- h. All the candidates shall submit *Three (03)* hard copies of the project reports that are duly approved and signed by internal as well as external *(if applicable)* supervisors.
- i. An external examiner, appointed for the purpose, shall evaluate the project report.
- j. The Head of the Department shall fix a date and time for viva-voce examinations, on receipt of the evaluation-report of the project reports from the external examiner.
- k. Head of the Department shall forward the compiled total marks (awarded in internal assessment, project Report and Viva-voce Examination), in the project-semester of each of the candidate, to the Controller of Examination.

9. EXAMINATION

- a. The performance of a student in a semester shall be evaluated through continuous class assessment and end semester examination. The continuous assessment shall be based on class tests, assignments/ tutorials, quizzes/ viva voce and attendance. The end semester examination shall be comprised of written papers, practical and viva voce, inspection of certified course work in classes and laboratories, project work, design reports or by means of any combination of these methods.
- b. The marks obtained in a subject shall consist of marks allotted in end semester theory paper, practical examination and sessional work.
- c. The minimum pass marks in each subject including sessional marks (Theory, Practical or Project etc.) shall be 50%.

10. PROMOTION SCHEME

- a. A student will be required to clear minimum **40% of his/her papers** (including Labs; excluding non-credit papers) in a semester/annual examination to be eligible **for promotion to the next semester/year**. A student may appear in the supplementary examination after each semester/annual examination and can have a choice to appear in the backlog papers in the supplementary examination or in the subsequent regular semester/annual examination with a prescribed fee. A students detained due to shortage of attendance will repeat his/her paper in the subsequent semester concerned (even/odd).
- b. A <u>detained</u> Student is not allowed to re-appear in the internal assessment (Unit test). His/her old internal assessment marks will remain same.

A student who cleared all the papers of a semester/annual examination of a programme/course will be eligible for improvement examination as per university rule.

After having passed all the FOUR semesters, the students shall be eligible for the award of <u>M. Tech. Computer Science & Engineering with Specialization in Data</u> <u>Sciences</u> degree of JAMIA HAMDARD.

11. THE GRADING SYSTEM

As per University Rule

12. CALCULATION OF SGPA AND CGPA OF A STUDENT IN A SEMESTER

As per University Rule

After having passed all the FOUR semesters successfully, the students shall be eligible for the award of *Master of Technology (Computer Science & Engineering with Specialization in Data Sciences)* degree of JAMIA HAMDARD based on their enrollment in the respective program.

13. CLASSIFICATION OF SUCCESSFUL CANDIDATES

The result of successful candidates, who fulfill the criteria for the award of *Master of Technology* (*Computer Science & Engineering with Specialization in Data Sciences*), *M. Tech. (CSE) – DS* shall be classified at the end of last semester, on the basis of his/her final CGPA (to be calculated as per university rule).

Detailed Curriculum

Name of The Course: M. Tech. (CSE) with specialization in *Data Sciences* Course Code: MTDS 101

Title of the Course: Mathematical Foundations of Computer Science

L-T-P: 3-1-0

(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Credits: 4

Course Prerequisite: Discrete Mathematics

COURSE OUTCOMES (COs)

After completing this Course, the students should be able to:

CO-1: Understand the basic notions of discrete and continuous probability distribution, and solve the problems. (Cognitive Level: Understand)

CO-2: Describe the random samples and the sampling distributions, and analyze different types of samples. (Cognitive Level: Analyze)

CO-3: Discuss Statistical inference and multivariate statistical models, and categorize & classify the data. (Cognitive Level: Creating)

CO-4: Define and explain the basic concepts of graph theory and solve problems in almost every conceivable discipline using graph models. (Cognitive Level: Understand)

CO-5: Express & use the vector spaces and related topics. (Cognitive Level: Remember)

CO-6: Enumerate objects and solve counting problems and analyze algorithms. (Cognitive Level: Analyze)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2			1				1	1	
CO2	3	3	3	1	2		1		2		1		1	1
CO3	2	3	2	1	2					1	1		1	
CO4	3	2	3	2	2	1							1	1
CO5	3	3	2	1	-								1	
CO6	3	3	2	2	2								1	

Each Course Outcome (CO) may be mapped with one or more Program Outcomes (POs). Write '3' in the box for 'High-level'mapping, 2 for 'Medium-level'mapping, 1 for 'Low'-level'mapping.

Detailed Syllabus:

Unit 1: Probability Functions and Distributions

Probability mass, density, and cumulative distribution functions, Parametric families of distributions, Expected value, variance, conditional expectation, Applications of the univariate and multivariate Central Limit Theorem, Probabilistic inequalities, Markov chains.

Unit 2: Random Sample Distribution

Random samples, sampling distributions of estimators, Methods of Moments and Maximum Likelihood.

Unit 3: Statistical Models

8 Hours

8 Hours

Statistical inference, Introduction to multivariate statistical models: regression and classification problems, principal components analysis, the problem of over-fitting model assessment.

Unit 4: Graph Theory

Graph Theory: Isomorphism, Planar graphs, graph colouring, Hamilton circuits and Euler cycles. Permutations and Combinations with and without repetition. Specialized techniques to solve combinatorial enumeration problems.

Unit 5: Vector Spaces:

Vector spaces; subspaces; Linearly independent and dependent vectors; Bases and dimension; coordinate vectors-Illustrative examples. Linear transformations; Representation of transformations by matrices; linear functional; Non singular Linear transformations; inverse of a linear transformation- Problems.

Unit-IV: Number-Theoretic Algorithms

6 Hours

Division Algorithm, GCD, Primes, Euclidean Algorithm, Congruences, Properties of Congruences, Solutions of Linear Congruences.

Reference Books:

- 1. Kenneth H. Rosen, "Discrete mathematics and its applications", McGraw-Hill, (7th Edition), (Smartbook available).
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th ed., Wiley.
- 3. Gupta S.C and Kapoor V .K, "Fundamentals of Mathematical Statistics", Sultan Chand and Sons 11th edition.
- 4. John Vince, Foundation Mathematics for Computer Science, Springer.
- 5. K. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer Science Applications. Wiley.
- 6. M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and Probabilistic Analysis.
- 7. David M. Burton, "Elementary Number Theory", McGraw-Hill, 7th Edition (2012).
- 8. David C.Lay, Steven R.Lay and J.J.McDonald: Linear Algebra and its Applications, 5 th Edition Research Education Ltd. 2015

Edition, Pearson Education Ltd., 2015.

Teaching-Learning Strategies in brief

- **1.** Build positive environment in the classroom.
- 2. Provide concrete basic and advanced knowledge of the subject.
- 3. Solve problems based on the basic & advanced concepts of the subject.
- 4. Encourage to the students to ask more & more questions.
- 5. Motivate to the students to develop critical & strategic thinking

Assessment methods and weightages in brief

- 1. By taking two sessional examinations.
- 2. By giving assignments.
- 3. By conducting class tests.
- 4. By taking semester examination.
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

8 Hours

Name of The Course: M. Tech. (CSE) with specialization in *Data Sciences* Course Code: MTDS 102 Title of the Course: Advanced Data Structures L-T-P: 3-1-0 (L = Lecture hours, T = Tutorial hours, P = Practical hours) Credits: 4

Course Prerequisite: UG level course in Data Structures

Course Outcomes:

The course will help students

CO1: The student should be able to choose appropriate data structures, understand the ADT/libraries, and use it to design algorithms for a specific problem. (Cognitive Level: Analyze) **CO2:** Students should be able to understand the necessary mathematical abstraction to solve problems. (Cognitive Level: Understand)

CO3: To familiarize students with advanced paradigms and data structure used to solve algorithmic problems. (Cognitive Level: Create)

CO4: Student should be able to come up with analysis of efficiency and proofs of correctness. (Cognitive Level: Analyze)

CO5: To make students future ready for Applying Data Structure concepts in upcoming technologies. (Cognitive Level: Analyze)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1		3	1			1	2		3	3
CO2	3	2	1	1	2	2		2		1	1		2	2
CO3	2	3	1	2		2				1	1	1	2	2
CO4	3	2	1	2		2				3			3	3
CO5	3	3	1	2		3				1	2		3	3

Unit wise Syllabus

<u> Unit – I: Dictionaries & Hashing</u>

Dictionaries: Definition, Dictionary Abstract Data Type, Implementation of Dictionaries. **Hashing:** Review of Hashing, Hash Function, Collision Resolution Techniques in Hashing, Separate Chaining, Open Addressing, Linear Probing, Quadratic Probing, Double Hashing, Rehashing, Extendible Hashing.

<u> Unit – II: Skip Lists</u>

Skip Lists: Need for Randomizing Data Structures and Algorithms, Search and Update Operations on Skip Lists, Probabilistic Analysis of Skip Lists, Deterministic Skip Lists

<u> Unit – III: Trees</u>

6 Hours

7 Hours

Trees: Binary Search Trees, AVL Trees, Red Black Trees, 2-3 Trees, B-Trees, Splay Trees

<u> Unit – IV: Text Processing</u>

Text Processing: Sting Operations, Brute-Force Pattern Matching, The Boyer- Moore Algorithm, The Knuth-Morris-Pratt Algorithm, Standard Tries, Compressed Tries, Suffix Tries, The Huffman Coding Algorithm, The Longest Common Subsequence Problem (LCS), Applying Dynamic Programming to the LCS Problem.

<u>Unit – V: Computational Geometry</u>

Computational Geometry: One Dimensional Range Searching, Two Dimensional Range Searching, Constructing a Priority Search Tree, Searching a Priority Search Tree, Priority Range Trees, Quadtrees, k-D Trees.

Unit – VI: Recent Trends in Hashing, Trees & Computational Geometry

6 Hours

Recent Trends in Hashing, Trees, and various computational geometry methods for efficiently solving the new evolving problem.

Text/ Reference Books:

1. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, 2nd Edition, Pearson, 2004.

2. M T Goodrich Roberto Tamassia, Algorithm Design, John Willey, 2002.

Teaching-Learning Strategies in brief (4 to 5 sentences)

- 1. Learning through discussion among the peer group
- 2. Learning through Case Studies
- 3. Open ended questions by teacher
- 4. Open ended questions from students
- 5. Preparation of question bank by students at various cognitive level

Assessment methods and weightages in brief (4 to 5 sentences)

- 1. time-constrained examinations;
- 2. closed-book and open-book tests;
- 3. individual project reports(case-study reports)
- 4. viva voce interviews
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

8 Hours

Name of The Course: M. Tech. (CSE) with specialization in Data Sciences Course Code: MTDS 103 Title of the Course: Research Methodology & IPR L-T-P: 2-0-0 (L = Lecture hours, T = Tutorial hours, P = Practical hours)Credits: 2

Course Outcomes:

The course will help students

CO1: Understand some basic concepts of research and its methodologies (Cognitive Level: Understand)

CO2: Identify appropriate research topics. (Cognitive Level: Remember)

CO3: Select and define appropriate research problem and parameters. (Cognitive Level: Create) **CO4:** Prepare a project proposal (to undertake a project). (Cognitive Level: Create)

CO5: Organize and conduct research (advanced project) in a more appropriate manner. (Cognitive Level: Apply)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific **Outcomes (PSOs)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1		3	1			1	2	1	3	3
CO2	3	3	1	1		2		1		1	1	1	2	3
CO3	3	3	1	2		2			1	1		1	3	3
CO4	3	3	1	2	1	2				1		1	3	3
CO5	3	3	1	2		3				1	1	1	3	3

Unit wise Syllabus

<u>Unit – I: Research Problem, Scope & Objectives</u>

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit – II: Effective Literature Studies

Effective literature studies approaches, analysis Plagiarism, Research ethics

Unit – III: Effective Technical Writing

Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

Unit – IV: Nature of Intellectual Property

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT

Page 26

8 Hours

8 Hours

6 Houes

<u> Unit – V: Patent Rights</u>

6 Hours

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

<u>Unit – VI: New Developments in IPR</u>

6 Hours

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

Text/ Reference book:

Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"

- Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction" Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- Mayall, "Industrial Design", McGraw Hill, 1992.
- Niebel, "Product Design", McGraw Hill, 1974.
- Asimov, "Introduction to Design", Prentice Hall, 1962.
- Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Teaching-Learning Strategies in brief (4 to 5 sentences)

- 1. Learning through discussion among the peer group
- 2. Learning through Case Studies
- 3. Open ended questions by teacher
- 4. Open ended questions from students
- 5. Preparation of question bank by students at various cognitive level

Assessment methods and weightages in brief (4 to 5 sentences)

- 1. time-constrained examinations;
- 2. closed-book and open-book tests;
- 3. individual project reports(case-study reports)
- 4. viva voce interviews
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Program: M.Tech CSE with specialization in Data Science Course Name: Advanced Data Structure Lab Course Code: MTDS 104

L-T-P: 0-0-2

Credits: 2

(L=Lecture hours, T=Tutorial hours, P=Practical hours)

CO1: Able to design and implement the basic as well as advanced data structures.

CO2: Searching and sorting are ore emphasised using advanced data structure.

CO3: Able to implement Text Data Processing Techniques using BOYER Algorithms.

CO4: To learn efficient use of Hash Tables.

CO5: Able to implement Text Data Processing Techniques using LCS Algorithms.

	PO	PSO1	PSO2											
	1	2	3	4	5	6	7	8	9	10	11	12		
CO	1	2	3	1	3	2	1	2	2	3	2	1	1	1
1														
CO	3	2	2	2	2	2	1	3	3	2	1	3	2	1
2														
CO	2	2	1	3	1	3	2	1	2	2	3	2	2	2
3														
CO	-	2	2	3	3	3	3	1	2	3	2	3	2	3
4														
CO	-	-	2	1	4	2	1	1	2	3	1	2	1	2
5														

MAPPING OF COURSE OUTCOME WITH PROGRAM OUTCOME

List of Program

- 1. Implementation of Traversal, Insertion, Deletion, Searching, Sorting in Linked list.
- 2. Implementation of stacks (PUSH, POP, SEARCH and SORT)
- 3. Implementation of Queues (Enque, Deque, Search and Sort)
- 4. Implementation of binary search Tree.
- 5. Implementation of Height Balanced Tree and calculation of balance factor.
- 6. Implementation of Red- Black Trees.
- 7. Implementation of Splay Tree.
- 8. Updating, deletion and creation of a hash table.
- 9. Implement Boyer-Moore Algorithm for Text Processing.
- 10. Implement LCS Algorithm for Text Processing.

Teaching-Learning Strategies in brief

- 1. Build openness and positive environment in the Lab.
- 2. Provide concrete basic and advanced knowledge of the subject.
- 3. Create collaborative environment among students.
- 4. Encourage students to ask questions and clarify doubts.
- 5. Motivate the students to develop critical & strategic thinking.

Assessment methods and weightages in brief

- 1. Giving assignments and Quizzes based on the subject.
- 2. Conducting viva.
- 3. Mid Term assessment and semester examination.
- 4. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Name of The Course: M. Tech. (CSE) with specialization in *Data Sciences* Course Code: MTDS 201

Title of the Course: Advanced Algorithms

L-T-P: 3-1-0

(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Credits: 4

Course Prerequisite: Algorithm Design & Analysis

Course Outcomes:

CO-1: Analyze the complexity and performance of different algorithms in different contexts. (Cognitive Level :Analyze)

CO-2: Determine the appropriate data structure for solving a particular set of problems. (Cognitive Level: Understand)

CO-3: Create and identify the computational issues and apply suitable algorithms to solve it effectively. (Cognitive Level: Create)

CO-4: Design and implement optimized algorithmic solutions in real world problems involving large data sets and artificial intelligence. (Cognitive Level: Understand)

CO-5: Design efficient and effective algorithmic solutions for different real world problems. (Cognitive Level: Remember)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1		3				1	2		3	3
CO2	3	2	1	1	2	2	1	2		1	1	1	2	2
CO3	2	3	1	2		2			1	1	2		2	2
CO4	3	2	1	2		2				3			3	3
CO5	3	3	1	2		3				1	1		3	3

Unit wise Syllabus

<u>Unit – I: Sorting</u>

Sorting: Review of various sorting algorithms, topological sorting Graph: Definitions and Elementary Algorithms: Shortest path by BFS, shortest path in edge-weighted case (Dijkasra's), depth-first search and computation of strongly connected components, emphasis on correctness proof of the algorithm and time/space analysis, example of amortized analysis.

<u>Unit – II: Matroids</u>

Matroids: Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set. Application to MST. Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path.

<u> Unit – III: Flow-Networks</u>

8 Hours

8 Hours

Flow-Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition.

Unit – IV: Shortest Path in Graphs

Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming More examples of dynamic programming. Modulo Representation of paradigm. integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen Integer Multiplication algorithm 8 Hours

Unit – V: Linear Programming

Linear Programming: Geometry of the feasibility region and Simplex algorithm NPcompleteness: Examples, proof of NP-hardness and NP-completeness. One or more of the following topics based on time and interest Approximation algorithms, Randomized Algorithms, Interior Point Method, Advanced Number Theoretic Algorithm

Unit – VI: Recent Trends in problem solving

8 Hours

Recent Trends in problem solving paradigms using recent searching and sorting techniques by applying recently proposed data structures.

Text/ Reference book:

- "Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.
- "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.
- "Algorithm Design" by Kleinberg and Tardos.
- Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.

Teaching-Learning Strategies in brief (4 to 5 sentences)

- 1. Learning through discussion among the peer group
- 2. Learning through Case Studies
- 3. Open ended questions by teacher
- 4. Open ended questions from students
- 5. Preparation of question bank by students at various cognitive level

Assessment methods and weightages in brief (4 to 5 sentences)

- 1. time-constrained examinations;
- 2. closed-book and open-book tests;
- 3. individual project reports(case-study reports)
- 4. viva voce interviews
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Name of The Course: M. Tech. (CSE) with specialization in *Data Sciences* Course Code: MTDS 202

Title of the Course: Soft Computing

L-T-P: 3-1-0

(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Credits: 4

Course Prerequisite: Basic knowledge of mathematics

Course Outcomes:

After completing this Course, the students should be able to

CO-1: Identify and describe soft computing techniques and their roles in building intelligent machines. (Cognitive Level :Understand)

CO 2: Apply fuzzy logic and reasoning to handle uncertainty and solve various engineering problems. (Cognitive Level :Apply)

CO-3: Analyze the effectiveness of using Neural Networks for solving real life problems. (Cognitive Level :Analyze)

CO 4: Explain the application of genetic algorithms to combinatorial optimization problems. (Cognitive Level :Understand)

CO 5: Evaluate and compare solutions by various soft computing approaches for a given problem. (Cognitive Level :Evaluate)

CO-6: Design deep learning based models for solving various machine learning problems. (Cognitive Level :Evaluate)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	2	1	1	1	1	1	1	1	2	3	1
CO2	2	3	3	3	2	1	1	1	1	1	1	3	3	1
CO3	3	2	2	2	3	1	1	1	1	2	2	2	2	1
CO4	2	3	2	3	3	2	1	2	2	1	1	1	3	1
CO5	2	2	3	2	2	1	1	1	1	1	2	1	3	1
CO6	3	3	2	2	3	1	1	2	2	2	2	1	3	1

Detailed Syllabus:

Unit 1: Introduction to Soft Computing

Evolution of Computing, Soft Computing Constituents, From Conventional AI to Computational Intelligence, Tools for Soft Computing, Machine Learning Basics

Unit 2: Fuzzy logic

Fuzzy logic vs. Crisp logic Concept of Fuzzy System, Fuzzy sets, Membership Functions, Fuzzy Terminologies, Operations on Fuzzy Sets, Fuzzy Relations, Fuzzy Rules and Fuzzy Reasoning, Fuzzy Inference Systems

Unit 3: Neural Networks

6 Hours

8 Hours

Neural Network Architectures, Perceptron Model, Feed forward Networks, Adaptive Networks, Supervised Learning Neural Networks, Radial Basis Function Networks: Reinforcement Learning, Unsupervised Learning Neural Networks, Adaptive Resonance architectures

Unit 4: Genetic Algorithms

Introduction to Genetic Algorithms (GA), Applications of GA in Machine Learning: Machine Learning Approach to Knowledge Acquisition

Unit 5: Matlab/Python Lib

Matlab/Python Lib: Introduction to Matlab/Python, Arrays and array operations, Functions and Files, Study of neural network toolbox and fuzzy logic toolbox, Simple implementation of Artificial Neural Network and Fuzzy Logic

Unit 6: Recent Trends in Deep Learning

Recent Trends in deep learning, various classifiers, neural networks and genetic algorithm. Implementation of recently proposed soft computing techniques.

Reference Books:

- 1. Padhy N. P., Simon S. P. Soft Computing: With MATLAB Programming, Oxford University Press, 2015.
- 2. George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall,1995.
- 3. Neural Networks: Algorithms, Applications and Programming Techniques, James A Freeman, David M. Skapura.
- 4. Genetic Algorithms in Search, Optimization, and Machine Learning, David E. Goldberg **Teaching-Learning Strategies in brief (4 to 5 sentences)**
 - 1. Learning through discussion among the peer group
 - 2. Learning through Case Studies
 - 3. Open ended questions by teacher
 - 4. Open ended questions from students
 - 5. Preparation of question bank by students at various cognitive level

Assessment methods and weightages in brief (4 to 5 sentences)

- 1. time-constrained examinations;
- 2. closed-book and open-book tests;
- 3. individual project reports(case-study reports)
- 4. viva voce interviews
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

8 Hours

6 Hours

Program: M.Tech CSE with specialization in Data Science Course Code: MTDS 203 Title of the Course: Lab III Lab Based on Core (Advanced Algorithms/Soft Computing) L-T-P: 0-0-2 Credits: 2

(L=Lecture hours, T=Tutorial hours, P=Practical hours)

COURSE OUTCOMES (CO)

CO1: Able to understand concept of different approaches of algorithms

CO2: Able to design clean and optimized codes.

CO3: Able to design and code algorithms based on brute force, greedy and divide and conquer and dynamic programming approaches (Cognitive level: create).

CO4: Able to identify syntax and semantics and logical issues in codes (Cognitive level: understand).

CO5: Able to understand the code complexity and create and design low complexity codes (Cognitive level: create).

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS 0 1	PS O2
CO1	1	1	-	-	-	-	1	1	2	1	2	1	1	1
CO2	-	1	3	-	1	-	2	1	-	1	2	1	2	2
CO3	1	1	3	1	-	1	-	2	1	2	-	1	3	2
CO4	-	1	-	-	1	-	1	-	-	-	1	-	1	1
CO5	1	-	3	-	-	1	1	1	1	2	-	1	1	2

Each Course Outcome (CO) may be mapped with one or more Program Outcomes (POs). Write '3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low'-level' mapping.

List of experiments

- 1. Write a program to implement merge sort and binary search algorithms.
- 2. Write a program to implement LCS approach
- 3. Write a program to implement Dijkstra Algorithm
- 4. Write a program to 8 Queen Problem and activity selection problem.
- 5. Write a program to implement magic square of order 3X3
- 6. Write a program in python to implement all logic gates.
- 7. Write a program in python to Implement Perceptron Learning Algorithm.
- 8. Write a program to implement SVM classification by using the concept of Fuzzy concepts.
- 9. Write a program to implement a Fuzzy Controller for Washing Machines.
- 10. Write a program in python to implement Hebb's and Delta rules.

Teaching-Learning Strategies in brief

- 1. Build openness and positive environment in the Lab.
- 2. Provide concrete basic and advanced knowledge of the subject.
- 3. Create collaborative environment among students.
- 4. Encourage students to ask questions and clarify doubts.
- 5. Motivate the students to develop critical & strategic thinking.

Assessment methods and weightages in brief

- 1. Giving assignments and Quizzes based on the subject.
- 2. Conducting viva.
- 3. Mid Term assessment and semester examination.
- 4. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Program: M.Tech CSE with specialization in Data Science Course Code: MTDS 203 Title of the Course: Data Preparation & Analysis LAB **L-T-P: 0-0-2** (L = Lecture hours, T = Tutorial hours, P = Practical hours) **Credits: 2 Course Outcomes:**

CO-1: To identify the data parsing and transformations. and understand the difference between data and information with formats. (Cognitive Level: analyse)

CO2: To explain and apply the basic concept of data cleaning for valuable information with a minimum consistency checking (Cognitive level: apply)

CO-3: To understand statistical exploratory analysis with hypothesis generation. (Cognitive Level: Evaluate)

CO-4: To design visualizations for exploratory analysis and understand the concept of correlations and connections for geo-located data. (Cognitive level: Create)

CO-5: To learn data transformations and segmentation to solve statistical problems. Able to extract the data for performing the Analysis. (Cognitive level: Apply)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO 12	PSO1	PSO2
CO1	3	1	1	1									2	2
CO2	2	3	2	2	2				2	2	2	2	2	1
CO3	2	2	2	2	3	3	1	2	3		2	2	3	1
CO4	3	3	2	2	2	2	2	3	2		3	2	2	1
CO5	2	2	2	2	2	2	2	2	2	2	2	3	2	1

3-High Level, 2-Medium Level, 1-Low Level

List of Experiments

1. There are four medicines MedA, MedB, MedC, and MedD. They have two attributes, weight index, and ph. Group these medicines into two groups on the basis of these attributes using k means clustering algorithm.

	Weight	ph
MedA	1	1
Med2	2	1
Med3	4	3
Med4	5	4

2. Calculate mean, median, and mode of following dataset using excel as the tool.

3,7,1,9,2,6,11,4,5,23,18

How do you identify the outliers?

- For the following data which denotes weight of raisins in (kgs), use excel to calculate correlation co-efficient, and standard deviation. Display it. 20,16,32,31,45,67,56,60
- 4. Write a program that implements the association rule mining technique.
- 5. Design a program that works on a given dataset and performs any of the normalization technique
- 6. Implement any of the missing data techniques.
- 7. For a given data, (can be fetched yourself from any real dataset), use any two visualization methods for viewing the data. Use any visualization tool or method.
- 8. Implement any noisy data handling technique.
- 9. Fetchany datset from UCI machine learning repository and apply any pre-processing technique on same.
- 10. Convert numerical data to categorical for a given dataset.

Teaching-Learning Strategies in brief

- 6. Build openness and positive environment in the Lab.
- 7. Provide concrete basic and advanced knowledge of the subject.
- 8. Create collaborative environment among students.
- 9. Encourage students to ask questions and clarify doubts.
- **10.** Motivate the students to develop critical & strategic thinking.

- 5. Giving assignments and Quizzes based on the subject.
- 6. Conducting viva.
- 7. Mid Term assessment and semester examination.
- 8. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Program Elective – I

Name of The Course: M. Tech. (CSE) with specialization in Data Sciences Course Code: MTDS PE111 Title of the Course: Data Science L-T-P: 3-1-0 (L = Lecture hours, T = Tutorial hours, P = Practical hours) Credits: 4

Course Outcomes:

CO-1: Provide you with the knowledge and expertise to become a proficient data scientist. (Cognitive Level :Create)

CO-2: To understand how data is collected from multiple sources and stored. (Cognitive Level :Understand)

CO-3: Demonstrate an understanding of statistics and machine learning concepts that are vital for data science. (Cognitive Level :Understand)

CO-4: Critically evaluate data visualizations based on their design and use for communicating stories from data. (Cognitive Level :Evaluate)

CO-5: Produce Python code to statistically analyze a dataset. (Cognitive Level : Analyze)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific **Outcomes (PSOs)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO 12	PSO1	PSO2
CO 1	3	2	3	1	2	3	2	1	2	3	2	2	2	1
CO2	2	3	2	3	2	2	2	3	2	3	2	2	2	2
CO3	2	2	2	2	2	3	1	2	3	2	2	2	3	2
CO4	3	3	2	2	2	2	2	3	2	2	3	2	2	1
COS	2	2	2	2	2	2	2	2	2	2	2	3	2	2

3-High Level, 2-Medium Level, 1-Low Level

Unit wise Syllabus

<u>Unit – I: Introduction to core concepts and technologies</u>

Introduction to core concepts and technologies: Introduction, Terminology, data science process, data science toolkit, Types of data, Example applications. 6 Hours

Unit – II: Data collection and management

Data collection and management: Introduction, Sources of data, Data collection and APIs, Exploring and fixing data, Data storage and management, Using multiple data sources Unit – III: Data analysis 8 Hours

Data analysis: Introduction, Terminology and concepts, Introduction to statistics, Central tendencies and distributions, Variance, Distribution properties and arithmetic, Samples/CLT, Basic machine learning algorithms, Linear regression, SVM, Naive Bayes.

Unit – IV: Data Visualisation

8 Hours

Data visualisation: Introduction, Types of data visualisation, Data for visualisation: Data types, Data encodings, Retinal variables, Mapping variables to encodings, Visual encodings. 6 Hours

Unit – V: Applications of Data Science

Applications of Data Science, Technologies for visualisation, (Python)

Unit – VI: Recent trends

6 Hours

Recent trends in various data collection and analysis techniques, various visualization techniques, application development methods of used in data science.

Text/ Reference Books:

- Joel Grus, Data Science from Scratch: First Principles with Python, O'Reilly Media
- Jake VanderPlas, Python Data Science Handbook: Essential Tools for Working with Data, O'Reilly Media
- Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk From The Frontline. O'Reilly.
- Jure Leskovek, Anand Rajaraman and Jeffrey Ullman. Mining of Massive Datasets. v2.1, Cambridge University Press.

Teaching-Learning Strategies in brief

- 1. Provide visuals, illustrations, explanations etc.
- 2. Provide basic and advanced knowledge about the subject.
- 3. Encourage the students to ask more & more questions.
- 4. Motivate the students to develop critical & strategic thinking

- 1. Sessional examination (2 Nos.)
- 2. Assignments.
- 3. Class tests
- 4. Semester examination
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Name of The Course: M. Tech. (CSE) with specialization in *Data Sciences* Course Code: MTDS PE112 Title of the Course: Distributed Systems L-T-P: 3-1-0 (L = Lecture hours, T = Tutorial hours, P = Practical hours) Credits: 4 Course Prerequisite: Database Management Systems

Course Outcomes:

CO-1: To introduce the fundamental concepts and issues of managing large volume of shared data in a parallel and distributed environment, and to provide insight into related research problems. (Cognitive Level :Understand)

CO-2: To provide hardware and software issues in modern distributed systems. (Cognitive Level :Analyze)

CO-3: To get knowledge in distributed architecture, naming, synchronization, consistency. (Cognitive Level :Understand)

CO-4: Replication, fault tolerance, security, and distributed file systems. (Cognitive Level :Remember)

CO-5: To analyze the current popular distributed systems such as peer-to-peer (P2P) systems will also be analyzed. (Cognitive Level :Analyze)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1		3				1	1	1	3	3
CO2	3	2	1	1	2	2		2		1	2		2	2
CO3	2	3	1	2		2	1			1	1		2	2
CO4	3	2	1	2		2			1	3			3	3
CO5	3	3	1	2		3				1		1	3	3

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

3-High Level, 2-Medium Level, 1-Low Level

Unit wise Syllabus

Unit – I: Introduction to Distributed Database Management System Architecture

8 Hours

INTRODUCTION: Distributed data processing; What is a DDBS; Advantages and disadvantages of DDBS; Problem areas; Overview of database and computer network concepts DISTRIBUTED DATABASE MANAGEMENT SYSTEM ARCHITECTURE: Transparencies in a distributed DBMS; Distributed DBMS architecture; Global directory issues

<u>Unit – II: Distributed Database Design</u>

DISTRIBUTED DATABASE DESIGN: Alternative design strategies; Distributed design issues; Fragmentation; Data allocation

SEMANTICS DATA CONTROL: View management; Data security; Semantic Integrity Control QUERY PROCESSING ISSUES: Objectives of query processing; Characterization of query processors; Layers of query processing; Query decomposition; Localization of distributed data 8 Hours

Unit – III: Distributed Query Optimization

DISTRIBUTED QUERY OPTIMIZATION: Factors governing query optimization; Centralized query optimization; Ordering of fragment queries; Distributed query optimization algorithms

TRANSACTION MANAGEMENT: The transaction concept; Goals of transaction management; Characteristics of transactions; Taxonomy of transaction models

CONCURRENCY CONTROL: Concurrency control in centralized database systems; Concurrency control in DDBSs; Distributed concurrency control algorithms; Deadlock management

Unit – IV: Reliability

6 Hours

6 Hours

6 Hours

RELIABILITY: Reliability issues in DDBSs; Types of failures; Reliability techniques; Commit protocols; Recovery protocols

Unit – V: Parallel Database Systems

PARALLEL DATABASE SYSTEMS: Parallel architectures; parallel query processing and optimization; load balancing

Unit – VI: Advanced Topics

ADVANCED TOPICS: Mobile Databases, Distributed Object Management, Multi-databases.

Text/ Reference Books:

- Principles of Distributed Database Systems, M.T. Ozsu and P. Valduriez, Prentice-Hall, 1991.
- Distributed Database Systems, D. Bell and J. Grimson, Addison-Wesley, 1992.

Teaching-Learning Strategies in brief

- 1. Provide visuals, illustrations, explanations etc.
- 2. Provide basic and advanced knowledge about the subject.
- 3. Encourage the students to ask more & more questions.
- 4. Motivate the students to develop critical & strategic thinking

Assessment methods and weightages in brief

- 1. Sessional examination (2 Nos.)
- 2. Assignments.
- 3. Class tests
- 4. Semester examination
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Name of The Course: M. Tech. (CSE) with specialization in *Data Sciences* Course Code: MTDS PE113

Title of the Course: Data Preparation & Analysis

L-T-P: 3-1-0

(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Credits: 4

Course Outcomes:

CO-1: To Gain knowledge to identify the data parsing and transformations. and understand the difference between data and information with formats. (Cognitive Level :Understand)

CO-2: To explain the basic concept of data cleaning for valuable information with a minimum consistency checking. (Cognitive Level :Remember)

CO-3: To understand statistical exploratory analysis with hypothesis generation. (Cognitive Level :Understand)

CO-4: To design visualizations for exploratory analysis and understand the concept of correlations and connections for geo located data. (Cognitive Level :Evaluate)

CO-5: To learn data transformations and segmentation to solve statistical problems. Able to extract the data for performing the Analysis. (Cognitive Level :Analyze)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO 12	PSO1	PSO2
CO1	3	2	3	1	2	3	2	1	2	3	2	2	2	2
CO2	2	3	2	2	2	2	2	3	2	3	2	2	2	1
CO3	2	2	2	2	3	3	1	2	3	2	2	2	3	1
CO4	3	3	2	2	2	2	2	3	2	2	3	2	2	1
CO5	2	2	2	2	2	2	2	2	2	2	2	3	2	1

3-High Level, 2-Medium Level, 1-Low Level

Unit wise Syllabus

<u> Unit – I: Defining Data Analysis Problems</u>

Knowing the client, Understanding the questions

Unit – II: Data Gathering and Preparation

Data Gathering and Preparation: Data formats, parsing and transformation, Scalability and realtime issues.

<u> Unit – III: Data Cleaning</u>

Data Cleaning: Consistency checking, Heterogeneous and missing data, Data Transformation and segmentation.

<u>Unit – IV: Exploratory Analysis</u>

8 Hours

6 Hours

6 Hours

Exploratory Analysis: Descriptive and comparative statistics, Clustering and association, Hypothesis generation.

Unit – V: Visualization

Visualization: Designing visualizations, Time series, Geolocated data, Correlations and connections, Hierarchies and networks, interactivity. 6 Hours

Unit – VI: Ethics in Profession

Cases in computing, statistics and Communication

Text/ Reference Books:

• Making sense of Data : A practical Guide to Exploratory Data Analysis and Data Mining, by Glenn J. Myatt

Teaching-Learning Strategies in brief

- 1. Provide visuals, illustrations, explanations etc.
- 2. Provide basic and advanced knowledge about the subject.
- 3. Encourage the students to ask more & more questions.
- 4. Motivate the students to develop critical & strategic thinking

Assessment methods and weightages in brief

- 1. Sessional examination (2 Nos.)
- 2. Assignments.
- 3. Class tests
- 4. Semester examination
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Title of the Course: Recommender System

Name of The Course: M. Tech. (CSE) with specialization in Data Sciences

Program Elective-II

- L-T-P: 3-1-0
- (L = Lecture hours, T = Tutorial hours, P = Practical hours)

Credits: 4

Course Outcome:

Course Code: MTDS PE121

After completion of course, students would be:

CO1: Aware of various issues related to Personalization and Recommendations. (Cognitive Level :Understand)

CO2: Design recommendation system for a particular application domain. (Cognitive Level :Create)

CO3: Design and implement a set of well-known Recommender System approaches used in E-commerce and Tourism industry. (Cognitive Level :Analyze)

CO4: Evaluate recommender systems on the basis of metrics such as accuracy, rank accuracy, diversity, product coverage, and serendipity. (Cognitive Level :Evaluate)

CO5: Conduct experimental evaluations on implemented algorithms. (Cognitive Level :Analyze)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	2	1	1	1	1	1	1	1	1	3	1
CO2	2	3	3	3	2	2	1	2	1	1	2	1	3	2
CO3	3	2	2	2	3	2	2	1	2	2	1		2	1
CO4	2	3	2	2	2	2	1	2	2	1	1	1	3	2
CO5	2	2	3	2	2	1	2	1	1	1			3	1

3-High Level, 2-Medium Level, 1-Low Level

Unit wise Syllabus

Unit – I: Introduction

Overview of Information Retrieval, Retrieval Models, Search and Filtering Techniques: Relevance Feedback, User Profiles, Recommender system functions, Matrix operations, covariance matrices, Understanding ratings, Applications of recommendation systems, Issues with recommender system.

Unit – II: Content-based Filtering

High level architecture of content-based systems, Advantages and drawbacks of content based filtering, Item profiles, Discovering features of documents, pre-processing and feature extraction, Obtaining item features from tags, Methods for learning user profiles, Similarity based retrieval, Classification algorithms.

Unit – III: Collaborative Filtering

6 Hours

8 Hours

User-based recommendation, Item-based recommendation, Model based approaches, Matrix factorization, Attacks on collaborative recommender systems.

<u>Unit – IV: Hybrid approaches</u>

Opportunities for hybridization, Monolithic hybridization design: Feature combination, Feature augmentation, Parallelized hybridization design: Weighted, Switching, Mixed, Pipelined hybridization design: Cascade Meta-level, Limitations of hybridization strategies

<u>Unit – V: Evaluating Recommender System</u> 6 Hours

Introduction, General properties of evaluation research, Evaluation designs: Accuracy, Coverage, confidence, novelty, diversity, scalability, serendipity, Evaluation on historical datasets, Offline evaluations.

<u>Unit – VI: Types of Recommender System</u>

Recommender systems in personalized web search, knowledge-based recommender system, Social tagging recommender systems, Trust-centric recommendations, Group recommender systems.

Text/ Reference Books:

- Jannach D., Zanker M. and FelFering A., Recommender Systems: An Introduction, Cambridge University Press (2011), 1st ed.
- Charu C. Aggarwal, Recommender Systems: The Textbook, Springer (2016), 1st ed.
- Ricci F., Rokach L., Shapira D., Kantor B.P., Recommender Systems Handbook, Springer(2011), 1st ed.
- Manouselis N., Drachsler H., Verbert K., Duval E., Recommender Systems For Learning, Springer (2013), 1st ed.

Teaching-Learning Strategies in brief

- 1. Provide visuals, illustrations, explanations etc.
- 2. Provide basic and advanced knowledge about the subject.
- **3.** Encourage the students to ask more & more questions.
- 4. Motivate the students to develop critical & strategic thinking

Assessment methods and weightages in brief

- 1. Sessional examination (2 Nos.)
- 2. Assignments.
- 3. Class tests
- 4. Semester examination
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

8 Hours

Name of The Course: M. Tech. (CSE) with specialization in *Data Sciences*

Course Code: MTDS PE122

Title of the Course: Machine Learning

L-T-P: 3-1-0

(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Credits: 4

Course Outcomes:

CO-1: To learn the concept of how to learn patterns and concepts from data without being explicitly programmed in various IoT nodes. (Cognitive Level :Understand)

CO-2: To design and analyse various machine learning algorithms and techniques with a modern outlook focusing on recent advances. (Cognitive Level :Understand)

CO-3: Explore supervised and unsupervised learning paradigms of machine learning. (Cognitive Level :Remember)

CO-4: To explore Deep learning technique and various feature extraction strategies. (Cognitive Level :Create)

CO-5: Design experiments to evaluate and compare different machine learning techniques on real-world problems. (Cognitive Level :Evaluate)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	2	1	1	1	1	1	1	1	1	3	1
CO2	2	3	3	3	2	2	1	2	1	1	2	1	3	2
CO3	3	2	2	2	3	2	2	1	2	2	1		2	1
CO4	2	3	2	2	2	2	1	2	2	1	1	1	3	2
CO5	2	2	3	2	2	1	2	1	1	1			3	1

3-High Level, 2-Medium Level, 1-Low Level

Unit wise Syllabus

<u> Unit – I: Supervised Learning</u>

Supervised Learning (Regression/Classification) - Basic methods: Distance-based methods, Nearest-Neighbours, Decision Trees, Naive Bayes - Linear models: Linear Regression, Logistic Regression, Generalized Linear Models; Support Vector Machines, Nonlinearity and Kernel Methods; Beyond Binary Classification: Multi-class/Structured Outputs, Ranking.

<u> Unit – II: Clustering</u>

Clustering: K-means/Kernel K-means; Dimensionality Reduction: PCA and kernel PCA; Matrix Factorization and Matrix Completion; Generative Models

<u> Unit – III: Evaluating Machine Learning</u>

Evaluating Machine Learning algorithms and Model Selection, Introduction to Statistical Learning Theory, Ensemble Methods (Boosting, Bagging, Random Forests).

Unit – IV: Sparse Modeling & Estimation

Sparse Modeling and Estimation, Modeling Sequence/Time-Series Data, Deep Learning and Feature Representation Learning

<u>Unit – V: Scalable Machine Learning</u>

6 hours

8 hours

6 hours

8 hours

8 hours

Page 46

Scalable Machine Learning (Online and Distributed Learning A selection from some other advanced topics, e.g., Semi-supervised Learning, Active Learning, Reinforcement Learning, Inference in Graphical Models, Introduction to Bayesian Learning and Inference. <u>Unit – VI: Recent Trends in various learning technique</u> 6 hours Recent trends in various learning techniques of machine learning and classification

Recent trends in various learning techniques of machine learning and classification methods for IOT applications. Various models for IOT applications.

Text/ Reference Books:

- Tom M. Michell, Machine Learning, McGraw Hills
- AurÈlien GÈron, Hands-On Machine Learning with Scikit-Learn and Tensor Flow: Concepts, Tools, and Techniques to Build Intelligent Systems, Orielly Publications
- Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012
- Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, Springer 2009 (freely available online)
- Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2007

Teaching-Learning Strategies in brief

- 1. Provide visuals, illustrations, explanations etc.
- 2. Provide basic and advanced knowledge about the subject.
- 3. Encourage the students to ask more & more questions.
- 4. Motivate the students to develop critical & strategic thinking

- 1. Sessional examination (2 Nos.)
- 2. Assignments.
- 3. Class tests
- 4. Semester examination
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Name of The Course: M. Tech. (CSE) with specialization in Data Sciences **Course Code: MTDS PE123**

Title of the Course: Data Storage Technologies & Networks

L-T-P: 3-1-0

(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Credits: 4

Course Prerequisite: Basic knowledge of Computer Architecture, Operating Systems, and

Computer Networking is required.

Course Outcome:

After completion of course, students would be:

CO1: Learn Storage System Architecture. (Cognitive Level :Understand)

CO2: Overview of Virtualization Technologies, Storage Area Network. (Cognitive Level :Understand)

CO3: Describe about Information availability and Business continuity. (Cognitive Level :Apply)

CO4: Describe the backup/recovery topologies. (Cognitive Level : Analyze)

CO5: Describe local replication and remote replication technologies and their operation. (Cognitive Level :Create)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	2	1	1	1	1	1	1	1	2	3	1
CO2	2	3	3	3	2	1	1	1	1	1	1	3	3	1
CO3	3	2	2	2	3	1	1	1	1	2	2	2	2	1
CO4	2	3	2	3	3	2	1	2	2	1	1	1	3	1
CO5	2	2	3	2	2	1	1	1	1	1	2	1	3	1

Unit wise Syllabus

Unit – I: Storage Media and Technologies

Magnetic, Optical and Semiconductor Media, Techniques for read/write Operations, Issues and Limitations.

Unit – II: Usage and Access

Positioning in the Memory Hierarchy, Hardware and Software Design for Access, Performance issues.

Unit – III: Large Storages

Hard Disks, Networked Attached Storage, Scalability issues, Networking issues.

<u>Unit – IV: Storage Architecture</u>

Storage Partitioning, Storage System Design, Caching, Legacy Systems.

Unit – V: Storage Area Networks and QoS

Hardware and Software Components, Storage Clusters/Grids.

Storage QoS-Performance, Reliability and Security issues.

6 Hours

8 Hours

8 Hours

8 Hours

6 Hours

<u> Unit – VI: Recent Trends</u>

Recent Trends related to Copy data management, Erasure coding, and Software defined storage appliances.

Text/ Reference Books:

- The Complete Guide to Data Storage Technologies for Network-centric Computing Paperback– Import, Mar 1998 by Computer Technology Research Corporation
- Data Storage Networking: Real World Skills for the Comp TIA Storage by Nigel Poulton

Teaching-Learning Strategies in brief

- 1. Provide visuals, illustrations, explanations etc.
- 2. Provide basic and advanced knowledge about the subject.
- **3.** Encourage the students to ask more & more questions.
- 4. Motivate the students to develop critical & strategic thinking

- 1. Sessional examination (2 Nos.)
- 2. Assignments.
- 3. Class tests
- 4. Semester examination
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Program Elective – III

Name of The Course: M. Tech. (CSE) with specialization in Data Sciences

Course Code: MTDS PE231

Title of the Course: Knowledge Discovery

L-T-P: 3-1-0

(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Credits: 4

Course Prerequisite: Data structures, Basic Statistics

Course Outcomes:

After completion of course, students would be able to

CO1: Understand and have knowledge of various knowledge representation methods. (Cognitive Level :Understand)

CO2: Demonstrate and evaluate an understanding of the importance of data mining and the principles of business intelligence. (Cognitive Level :Analyze)

CO3: Create, and analyze the data for decision making using decision trees in various real-life applications and evaluate various error identifying methods. (Cognitive Level :Create)

CO4: Implement the appropriate data mining methods like association rule mining in business processes and understand the importance of Frequent Pattern mining on large data sets. (Cognitive Level :Analyze)

CO5: Conduct case studies on real data mining examples. (Cognitive Level :Evaluate)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO 12	PSO1	PSO2
CO1	3	2	3	1	2	3	2	1	2	3	2	2	2	1
CO2	2	3	2	3	2	2	2	3	2	3	2	2	2	2
CO3	2	3	2	2	2	3	1	2	3	2	2	2	3	1
CO4	3	3	2	2	2	2	2	3	2	2	3	2	2	1
CO5	2	2	2	2	2	2	2	2	2	2	2	3	2	2

Unit wise Syllabus

Unit – I: Introduction KDD and Data Mining

Data Mining and Machine Learning, Machine Learning and Statistics, Generalization as Search, Data Mining and Ethics

<u>Unit – II: Knowledge Representation</u>

Decision Tables, Decision Trees, Classification Rules, Association Rules, Rules involving Relations, Trees for Numeric Predictions, Neural Networks, Clusters

<u> Unit – III: Decision Trees</u>

8 Hours

8 Hours

Divide and Conquer, Calculating Information, Entropy, Pruning Estimating Error Rates, The C4.5 Algorithm **Evaluation of Learned Results**- Training and Testing, Predicting Performance, Cross- Validation

Unit – IV: Classification Rules

Inferring Rudimentary Rules, Covering Algorithms for Rule Construction, Probability Measure for Rule Evaluation, Association Rules, Item Sets, Rule Efficiency

<u> Unit – V: Numeric Predictions</u>

Linear Models for Classification and Numeric Predictions, Numeric Predictions with Regression Trees, Evaluating Numeric Predictions

<u> Unit – VI: Artificial Neural Networks</u>

Perceptrons, Multilayer Networks, TheBackpropagation Algorithm

Clustering - Iterative Distance-based Clustering, Incremental Clustering, The EM Algorithm

Learning Outcome:

After completion of course, students would be:

- 1. Able to have knowledge of various knowledge representation methods.
- 2. Demonstrate an understanding of the importance of data mining and the principles of
- 3. business intelligence
- 4. Organize and Prepare the data needed for data mining using pre preprocessing techniques
- 5. Implement the appropriate data mining methods like classification, clustering or Frequent Pattern mining on large data sets

Text/ Reference Books:

- Data mining and knowledge discovery handbook by Maimon, oded(et al.)
- Data Cleansing: A Prelude to knowledge Discovery

Teaching-Learning Strategies in brief

- 1. Provide visuals, illustrations, explanations etc.
- 2. Provide basic and advanced knowledge about the subject.
- **3.** Encourage the students to ask more & more questions.
- 4. Motivate the students to develop critical & strategic thinking

Assessment methods and weightages in brief

- 1. Sessional examination (2 Nos.)
- 2. Assignments.
- 3. Class tests
- 4. Semester examination
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

8 Hours

6 Hours

Name of The Course: M. Tech. (CSE) with specialization in *Data Sciences* **Course Code:** MTDS PE232 **Title of the Course:** Big Data Analytics L-T-P: 3-1-0 (L = Lecture hours, T = Tutorial hours, P = Practical hours)Credits: 4 Course Prerequisite: Data Structure, Computer Architecture and Organization **Course Outcome: CO1:** Describe big data and use cases from selected business domains. (Cognitive Level :Understand)

CO2: Explain NoSQL big data management. (Cognitive Level :Evaluate)

CO3: Install, configure, and run Hadoop and HDFS. (Cognitive Level :Evaluate)

CO4: Perform map-reduce analytics using Hadoop. (Cognitive Level : Analyze)

CO5: Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data analytics. (Cognitive Level : Analyze)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	2	1	1	1	1	1	1	1	2	3	1
CO2	2	3	3	3	2	1	1	1	1	1	1	3	3	1
CO3	3	2	2	2	3	1	1	1	1	2	2	2	2	1
CO4	2	3	2	3	3	2	1	2	2	1	1	1	3	1
CO5	2	2	3	2	2	1	1	1	1	1	2	1	3	1

Unit wise Syllabus

<u>Unit – I: Introduction to Big Data</u>

What is big data, why big data, convergence of key trends, unstructured data, industry examples of big data, web analytics, big data and marketing, fraud and big data, risk and big data, credit risk management, big data and algorithmic trading, big data and healthcare, big data in medicine, advertising and big data, big data technologies, introduction to Hadoop, open source technologies, cloud and big data, mobile business intelligence, Crowd sourcing analytics, inter and trans firewall analytics.

Unit – II: Introduction to NoSQL

Introduction to NoSQL, aggregate data models, aggregates, key-value and document data models, relationships, graph databases, schema less databases, materialized views, distribution models, sharding, master-slave replication, peer peer replication, sharding and replication, consistency, relaxing consistency, version stamps, map-reduce, partitioning and combining, composing map-reduce calculations.

Unit – III: Data Format

8 Hours

8 Hours

Data format, analyzing data with Hadoop, scaling out, Hadoop streaming, Hadoop pipes, design of Hadoop distributed file system (HDFS), HDFS concepts, Java interface, data flow, Hadoop I/O, data integrity, compression, serialization, Avro, file-based data structures
<u>Unit – IV: MapReduce</u> **8 Hours**

Map Reduce workflows, unit tests with MR Unit, test data and local tests, anatomy of Map Reduce job run, classic Map-reduce, YARN, failures in classic Map-reduce and YARN, job scheduling, shuffle and sort, task execution, Map Reduce types, input formats, output formats
<u>Unit – V: Hbase</u>
8 Hours

Hbase, data model and implementations, Hbase clients, Hbase examples, praxis.Cassandra, Cassandra data model, Cassandra examples, Cassandra clients, Hadoop integration. <u>Unit – VI: Data Models</u> 8 Hours

Pig, Grunt, pig data model, Pig Latin, developing and testing Pig Latin scripts. Hive, data types and file formats, HiveQL data definition, HiveQL data manipulation, HiveQL queries.

Text/ Reference Books:

- Michael Minelli, Michelle Chambers, and AmbigaDhiraj, "Big Data, Big Analytics: Emerging
- Business Intelligence and Analytic Trends for Today's Businesses", Wiley, 2013.
- P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World of
- Polyglot Persistence", Addison-Wesley Professional, 2012.
- Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012.
- Eric Sammer, "Hadoop Operations", O'Reilley, 2012.
- E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilley, 2012.
- Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.
- Eben Hewitt, "Cassandra: The Definitive Guide", O'Reilley, 2010.
- Alan Gates, "Programming Pig", O'Reilley, 2011

Teaching-Learning Strategies in brief

- 1. Provide visuals, illustrations, explanations etc.
- 2. Provide basic and advanced knowledge about the subject.
- 3. Encourage the students to ask more & more questions.
- 4. Motivate the students to develop critical & strategic thinking

- 1. Sessional examination (2 Nos.)
- 2. Assignments.
- 3. Class tests
- 4. Semester examination
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

JH/CSE/AICTE/CBCS/MTCSE-DS/2022-23

Similarity search in Time-series analysis *Unit – IV: Data Streams*

<u>Unit – IV: Data Streams</u> 8 Hours Mining Data Streams, Methodologies for stream data processing and stream data systems, Frequent pattern mining in stream data, Sequential Pattern Mining in Data Streams,

Mining Time series Data, Periodicity Analysis for time related sequence data, Trend analysis,

nd Prediction

Unit wise SyllabusUnit – I: Introduction to Data Warehousing8 HoursIntroduction to Data Warehousing; Data Mining: Mining frequent patterns, association a

Introduction to Data Warehousing; Data Mining: Mining frequent patterns, association and correlations; Sequential Pattern Mining concepts, primitives, scalable methods

Unit – II: Classification and Prediction

Classification and prediction; Cluster Analysis – Types of Data in Cluster Analysis, Partitioning methods, Hierarchical Methods; Transactional Patterns and other temporal based frequent patterns.

patterns. *Unit – III: Data Mining*

Course Code: MTDS PE233

L-T-P: 3-1-0

Course Outcomes:

Credits: 4

CO4: Help in identifying the computing framework for Big Data. (Cognitive Level :Analyze)
 CO5: Develop skill in selecting the appropriate data mining algorithm for solving practical problems. (Cognitive Level :Evaluate)
 Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

CO1: Study of different sequential pattern algorithms. (Cognitive Level :Understand)

CO2: Study the technique to extract patterns from time series data and it application in real

CO3: Can extend the Graph mining algorithms to Web mining. (Cognitive Level :Evaluate)

Name of The Course: M. Tech. (CSE) with specialization in Data Sciences

Title of the Course: Data Warehousing & Data Mining

After completion of course, students would be:

world. (Cognitive Level :Understand)

(L = Lecture hours, T = Tutorial hours, P = Practical hours)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	2	1	1	1	1	1	1	1	1	3	1
CO2	2	3	3	3	2	2	1	2	1	1	2	1	3	2
CO3	3	2	2	2	3	2	2	1	2	2	1		2	1
CO4	2	3	2	2	2	2	1	2	2	1	1	1	3	2
CO5	2	2	3	2	2	1	2	1	1	1			3	1

3-High Level, 2-Medium Level, 1-Low Level

8 Hours

Classification of dynamic data streams, Class Imbalance Problem; Graph Mining; Social Network Analysis

<u> Unit – V: Web Mining</u>

Web Mining, Mining the web page layout structure, mining web link structure, mining multimedia data on the web, Automatic classification of web documents and web usage mining; Distributed Data Mining.

<u> Unit – VI: Recent Trends</u>

6 Hours

8 Hours

Recent trends in Distributed Warehousing and Data Mining, Class Imbalance Problem; Graph Mining; Social Network Analysis

Learning Outcome:

Text/ Reference Books:

- Jiawei Han and M Kamber, Data Mining Concepts and Techniques, Second Edition, Elsevier Publication, 2011.
- Vipin Kumar, Introduction to Data Mining Pang-Ning Tan, Michael Steinbach, Addison Wesley, 2006.
- G Dong and J Pei, Sequence Data Mining, Springer, 2007.

Teaching-Learning Strategies in brief

- 1. Provide visuals, illustrations, explanations etc.
- 2. Provide basic and advanced knowledge about the subject.
- **3.** Encourage the students to ask more & more questions.
- 4. Motivate the students to develop critical & strategic thinking

- 1. Sessional examination (2 Nos.)
- 2. Assignments.
- 3. Class tests
- 4. Semester examination
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Program Elective – IV

Name of The Course: M. Tech. (CSE) with specialization in *Data Sciences* Course Code: MTDS PE241 Title of the Course: Pattern Recognition L-T-P: 3-1-0 Credit: 4 (L = Lecture hours, T = Tutorial hours, P = Practical hours) Course Prerequisite: Data Mining

COURSE OUTCOMES:

After completing this Course (or unit of a course) the students should be able to:
CO1: Basic concepts of pattern recognition. (Cognitive Level :Analyze)
CO2: fundamental problems in pattern recognition system, design concepts and methodologies. (Cognitive Level :Understand)
CO3: Compare and describe different types of cognitive models. (Cognitive Level :Understand)
CO4: Assess the applicability of mobile ecosystem. (Cognitive Level :Analyze)
CO5: Interpret the various aspects of Web Interface Designing. (Cognitive Level :Apply)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1				3			1	2				1		
CO2	1	2	3	1		1					1	1	2	1
CO3		2					1		1		1			
CO4		1	2		1	1				2	2		1	
CO5		2	2								1		1	

Each Course Outcome (CO) may be mapped with one or more Program Outcomes (POs). Write '3' in the box for 'High-level'mapping, 2 for 'Medium-level'mapping, 1 for 'Low'-level'mapping.

Unit wise Syllabus

<u>Unit – I: Pattern recognition fundamentals:</u>

8 hours

Basic concepts of pattern recognition, fundamental problems in pattern recognition system, design concepts and methodologies, example of automatic pattern recognition systems, a simple automatic pattern recognition model.

JH/CSE/AICTE/CBCS/MTCSE-DS/2022-23

<u>Unit – II:</u> <u>Bayesian decision theory</u>

Minimum-error-rate classification, Classifiers, Discriminant functions, Decision surfaces, Normal density and discriminant functions, Discrete features, Missing and noisy features, Bayesian networks (Graphical models) and inferencing.

<u>Unit – III: Maximum-likelihood and Bayesian parameter estimation:</u> 8 hours

Gaussian case, Maximum a Posteriori estimation, Bayesian estimation: Gaussian case, Problems of dimensionality, Dimensionality reduction: Fisher discriminant analysis, PCA Expectation Maximization method: Missing features

Unit – IV: Sequential Models and Linear discriminant functions

State Space, Hidden Markov models, Dynamic Bayesian, Non-parametric techniques for density estimation: Parzen-window method, K-Nearest Neighbour method

Gradient descent procedures, Perceptron criterion function, Minimum-squared-error procedures, Ho-Kashyap procedures, Support vector machines

Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools.

Unit –V: Unsupervised learning and clustering:

Unsupervised maximum-likelihood estimates, Unsupervised Bayesian learning, Criterion functions for clustering, Algorithms for clustering: Kmeans, Hierarchical and other methods, Cluster validation, Low-dimensional representation and multidimensional scaling (MDS).

Text/ Reference Books:

- Pattern Recognition principles: Julus T. Tou and Rafel C. Gonzalez, Addision Wesley.
- Pattern recognition and machine learning, Christopher M. Bishop, Springer 2006.
- A probabilistic theory of pattern recognition, Luc Devroye, László Györfi, Gábor Lugosi, Springer, 1996.
- Pattern classification, Richard O. Duda, Peter E. Hart and David G. Stork, Wiley, 2001.
- Pattern Classification, R.O.Duda, P.E.Hart and D.G.Stork, John Wiley

Teaching-Learning Strategies in brief (4 to 5 sentences)

- 1. Learning through discussion among the peer group
- 2. Learning through Case Studies
- 3. Open ended questions by teacher
- 4. Open ended questions from students
- 5. Preparation of question bank by students at various cognitive level

Assessment methods and weightages in brief (4 to 5 sentences)

- 1. time-constrained examinations;
- 2. closed-book and open-book tests;
- 3. individual project reports(case-study reports)
- 4. viva voce interviews
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

8 hours

8 hours

8 hours

Name of The Course: M. Tech. (CSE) with specialization in *Data Sciences* Course Code: MTDS PE242 Title of the Course: Web Analytics & Development L-T-P: 3-1-0 (L = Lecture hours, T = Tutorial hours, P = Practical hours)

Course Outcomes:

After completion of course, students would be:

CO1: Become familiar with core research communities, publications, focused on web and social media analytics and research questions engaged in. (Cognitive Level :Apply)

CO2: Recognize the feasibility of History of Text Mining and Basics of Text Analytic. (Cognitive Level :Apply)

CO3: Evaluate effectively use of Web Analytics and Web Mining. (Cognitive Level :Understand)

CO4: Future of Text and Web Analytics. (Cognitive Level : Analyze)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	2	1	1	1	1	1	1	1	1	3	1
CO2	2	3	3	3	2	2	1	2	1	1	2	1	3	2
CO3	3	2	2	2	3	2	2	1	2	2	1		2	1
CO4	2	3	2	2	2	2	1	2	2	1	1	1	3	2

Unit wise Syllabus

<u> Unit – I: Introduction</u>

Social network and Web data and methods, Graph and Matrices, Basic measures for individuals and networks, Information Visualization

<u>Unit – II: Web Analytics tools</u>

Click Stream Analysis, A/B testing, Online Surveys

<u>Unit – III: Web Search and Retrieval</u>

Search Engine Optimization, Web Crawling and indexing, Ranking Algorithms, Web traffic models
<u>Unit – IV: Making Connection</u> **8 Hours**

Link Analysis, Random Graphs and Network evolution, Social Connects: Affiliation and identity
<u>Unit – V: Connection</u> **8 Hours**

Connection Search, Collapse, Robustness Social involvements and diffusion of innovation

Text/ Reference Books:

- 1. Hansen, Derek, Ben Sheiderman, Marc Smith. 2011. Analyzing Social Media Networks with NodeXL: Insights from a Connected World. Morgan Kaufmann, 304.
- 2. AvinashKaushik. 2009. Web Analytics 2.0: The Art of Online Accountability.

8 Hours

8 Hours

- 3. Easley, D. & Kleinberg, J. (2010). Networks, Crowds, and Markets: Reasoning About a Highly Connected World. New York: Cambridge University Press. http://www.cs.cornell.edu/home/kleinber/networks-book/
- Wasserman, S. & Faust, K. (1994). Social network analysis: Methods and applications. New York: Cambridge University Press. Monge, P. R. & Contractor, N. S. (2003). Theories of communication networks. New York: Oxford University Press.

Teaching-Learning Strategies in brief (4 to 5 sentences)

- 1. Learning through discussion among the peer group
- 2. Learning through Case Studies
- 3. Open ended questions by teacher
- 4. Open ended questions from students
- 5. Preparation of question bank by students at various cognitive level

Assessment methods and weightages in brief (4 to 5 sentences)

- 1. time-constrained examinations;
- 2. closed-book and open-book tests;
- 3. individual project reports(case-study reports)
- 4. viva voce interviews
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Program Elective – V

Name of The Course: M. Tech. (CSE) with specialization in *Data Sciences* Course Code: MTDS PE351

Title of the Course: GPU Computing

L-T-P: 3-1-0

(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Credits: 4

Course Outcomes:

CO-1: To learn parallel programming with Graphics Processing Units (GPUs). (Cognitive Level :Understand)

CO-2: To convey a deep understanding of GPU architecture and APIs. (Cognitive Level :Apply)

CO-3: Understanding the traditional use of GPUs for general purpose computations. (Cognitive Level :Understand)

CO-4: To learn debugging and profiling parallel programs. (Cognitive Level :Apply)

CO-5: To learn the concepts in parallel programming. (Cognitive Level :Analyze)

Mapping of Course Outcomes (COs) with Program Outcomes (POs)and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3	2	3	1				3	3	1	3	1
CO2	2	3	3	3	3		1			2	1	2	3	1
CO3	3	3	3	2	3			1		3	1	1	3	1
CO4	3	3	3	3	3				1	2	1	2	3	1
CO5	2	3	3	3	3				1	3	1	3	3	2

Each Course Outcome (CO) may be mapped with one or more Program Outcomes (POs). Write '3' in the box for 'High-level'mapping, 2 for 'Medium-level'mapping, 1 for 'Low'-level'mapping.

Unit wise Syllabus

<u> Unit – I: Introduction</u>

History, Graphics Processors, Graphics Processing Units, GPGPUs. Clock speeds, CPU / GPU comparisons, Heterogeneity, Accelerators, Parallel programming, CUDA OpenCL / OpenACC, Hello World Computation Kernels, Launch parameters, Thread hierarchy, Warps / Wavefronts, Thread blocks / Workgroups, Streaming multiprocessors, 1D / 2D / 3D thread mapping, Device properties, Simple Programs

<u> Unit – II: Memory</u>

6 Hours

Memory hierarchy, DRAM / global, local / shared, private / local, textures, Constant Memory, Pointers, Parameter Passing, Arrays and dynamic Memory, Multi-dimensional Arrays, Memory Allocation, Memory copying across devices, Programs with matrices, Performance evaluation with different memories

<u> Unit – III: Synchronization</u>

Memory Consistency, Barriers (local versus global), Atomics, Memory fence. Prefix sum, Reduction. Programs for concurrent Data Structures such as Worklists, Linked-lists. Synchronization across CPU and GPU **Functions**: Device functions, Host functions, Kernels functions, Using libraries (such as Thrust), and developing libraries.

<u> Unit – IV: Support</u>

Debugging GPU Programs. Profiling, Profile tools, Performance aspects **Streams**: Asynchronous processing, tasks, Task-dependence, Overlapped data transfers, Default Stream, Synchronization with streams. Events, Event-based- Synchronization - Overlapping data transfer and kernel execution, pitfalls.

Unit – V: Case Studies

Image Processing, Graph algorithms, Simulations, Deep Learning

<u>Unit – VI:Advanced topics</u>

Dynamic parallelism, Unified Virtual Memory, Multi-GPU processing, Peer access, Heterogeneous processing

Reference Books:

- 1. Programming Massively Parallel Processors: A Hands-on Approach; David Kirk, WenmeiHwu; Morgan Kaufman; 2010 (ISBN: 978-0123814722)
- 2. CUDA Programming: A Developer's Guide to Parallel Computing with GPUs; Shane Cook; Morgan Kaufman; 2012 (ISBN: 978-0124159334)

Teaching-Learning Strategies in brief

- 1. Provide visuals, illustrations, explanations etc.
- 2. Provide basic and advanced knowledge about the subject.
- **3.** Encourage the students to ask more & more questions.
- 4. Motivate the students to develop critical & strategic thinking

Assessment methods and weightages in brief

- 1. Sessional examination (2 Nos.)
- 2. Assignments.
- 3. Class tests
- 4. Semester examination
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Page 61

8 Hours

8 Hours

6 Hours

Name of The Course: M. Tech. (CSE) with specialization in *Data Sciences* Course Code: MTDS PE351

Title of the Course: Cloud Computing

L-T-P: 3-1-0

(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Credits: 4

Course Outcomes:

CO1: Understanding the basic Cloud types and delivery models. (Cognitive Level :Understand)

CO2: Develop an understanding of the risk and compliance responsibilities and Challenges for each Cloud type and service delivery model. (Cognitive Level :Apply)

CO3: Develop a risk-management strategy for moving to the Cloud. (Cognitive Level :Apply)

CO4: Implement a public cloud instance using a public cloud service provider. (Cognitive Level :Analyze)

CO5: Apply trust-based security model to different layer. (Cognitive Level :Apply)

Mapping of Course Outcomes (COs) with Program Outcomes (POs)and Program

Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	2	1	1	1	1	1	1	1	2	3	1
CO2	2	3	3	3	2	1	1	1	1	1	1	3	3	1
CO3	3	2	2	2	3	1	1	1	1	2	2	2	2	1
CO4	2	3	2	3	3	2	1	2	2	1	1	1	3	1
CO5	2	2	3	2	2	1	1	1	1	1	2	1	3	1

Unit wise Syllabus

<u>Unit – I: Introduction to Cloud Computing</u>

6 Hours

8 Hours

Online Social Networks and Applications, Cloud introduction and overview, Different clouds, Risks, Novel applications of cloud computing

Unit – II: Cloud Computing Architecture

Requirements, Introduction Cloud computing architecture, On Demand Computing Virtualization at the infrastructure level, Security in Cloud computing environments, CPU Virtualization, A discussion on Hypervisors Storage Virtualization Cloud Computing Defined, The SPI Framework for Cloud Computing, The Traditional Software Model, The Cloud Services Delivery Model

Cloud Deployment Models

Key Drivers to Adopting the Cloud, The Impact of Cloud Computing on Users, Governance in the Cloud, Barriers to Cloud Computing Adoption in the Enterprise

Unit – III: Security Issues in Cloud Computing

Infrastructure Security, Infrastructure Security: The Network Level, The Host Level, The Application Level, Data Security and Storage, Aspects of Data Security, Data Security Mitigation Provider Data and Its Security

Identity and Access Management

Trust Boundaries and IAM, IAM Challenges, Relevant IAM Standards and Protocols for Cloud Services, IAM Practices in the Cloud, Cloud Authorization Management

Unit – IV: Security Management in the Cloud

8 Hours

6 Hours

Security Management Standards, Security Management in the Cloud, Availability Management: SaaS, PaaS, IaaS

Privacy Issues

Privacy Issues, Data Life Cycle, Key Privacy Concerns in the Cloud, Protecting Privacy, Changes to Privacy Risk Management and Compliance in Relation to Cloud Computing, Legal and Regulatory Implications, U.S. Laws and Regulations, International Laws and Regulations

<u> Unit – V: Audit and Compliance</u>

Internal Policy Compliance, Governance, Risk, and Compliance (GRC), Regulatory/External Compliance, Cloud Security Alliance, Auditing the Cloud for Compliance, Security-as-a-Cloud <u>Unit – VI: Advanced Topics</u> 6 Hours

Recent developments in hybrid cloud and cloud security.

Teaching-Learning Strategies in brief

- 1. Provide visuals, illustrations, explanations etc.
- 2. Provide basic and advanced knowledge about the subject.
- 3. Encourage the students to ask more & more questions.
- 4. Motivate the students to develop critical & strategic thinking

- 1. Sessional examination (2 Nos.)
- 2. Assignments.
- 3. Class tests
- 4. Semester examination
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Name of The Course: M. Tech. (CSE) with specialization in *Data Sciences* Course Code: MTDS PE352

Title of the Course: Distributed Database

L-T-P: 3-1-0

(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Credits: 4

Course Prerequisite: Distributed Systems

Course Outcomes:

After completion of course, students would be:

CO1: Able to understand relational database management systems. (Cognitive Level :Understand)

CO2: Able to understand normalization to make efficient retrieval from database and query. (Cognitive Level :Apply)

CO3: Understand query processing in a distributed database system. (Cognitive Level :Apply)

CO4: Understand concurrency control and database correctness. (Cognitive Level :Analyze)

CO5: Understand distributed database limitations and consequences. (Cognitive Level :Understand)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1		3	1			1	1	1	3	3
CO2	3	2	1	1	2	2		2		1	2		2	2
CO3	2	3	1	2		2				1	1		2	2
CO4	3	2	1	2		2				3			3	3
CO5	3	3	1	2		3			1	1		1	3	3

3-High Level, 2-Medium Level, 1-Low Level

Unit wise Syllabus

<u> Unit – I: Introduction</u>

8 Hours

Distributed Data processing, Distributed database system (DDBMS), Promises of DDBMSs, Complicating factors and Problem areas in DDBMSs, Overview Of Relational DBMS Relational Database concepts, Normalization, Integrity rules, Relational Data Languages, Relational DBMS <u>Unit – II: Distributed DBMS Architecture</u> **8 Hours** DBMS Standardization, Architectural models for Distributed DBMS, Distributed DBMS Architecture. Distributed Database Design: Alternative design Strategies, Distribution design issues, Fragmentation, Allocation. Semantic Data Control: View Management, Data security, Semantic Integrity Control.

<u>Unit – III: Overview of Query Processing</u>

Query processing problem, Objectives of Query Processing, Complexity of Relational Algebra operations, characterization of Query processors, Layers of Query Processing. Introduction to Transaction Management: Definition of Transaction, Properties of transaction, types of transaction. Distributed Concurrency Control: Serializability theory, Taxonomy of concurrency control mechanisms, locking bases concurrency control algorithms.

Unit – IV: Parallel Database Systems

Database servers, Parallel architecture, Parallel DBMS techniques, Parallel execution problems, Parallel execution for hierarchical architecture.

Unit – V: Distributed Object Database Management systems

Fundamental Object concepts and Object models, Object distribution design. Architectural issues, Object management, Distributed object storage, Object query processing. Transaction management. Database Interoperability: Database Integration, Query processing

<u> Unit – VI: Recent Trends</u>

Recent approaches, models and current trends in improving the performance of Distributed Database.

Text/ Reference Books:

- 1. Principles of Distributed Database Systems, Second Edition, M. Tamer Ozsu Patrick Valduriez
- 2. Distributed Databases principles and systems, Stefano Ceri, Giuseppe Pelagatti, Tata McGraw Hill.

Teaching-Learning Strategies in brief

- 1. Provide visuals, illustrations, explanations etc.
- 2. Provide basic and advanced knowledge about the subject.
- 3. Encourage the students to ask more & more questions.
- 4. Motivate the students to develop critical & strategic thinking

Assessment methods and weightages in brief

- 1. Sessional examination (2 Nos.)
- 2. Assignments.
- 3. Class tests
- 4. Semester examination
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

8 Hours

8 Hours

8 Hours

OPEN ELECTIVES

Name of The Course: M. Tech. (CSE) with specialization in *Data Sciences* Course Code: MTDS OE311 Title of the Course: Business Analytics L-T-P: 3-1-0 (L = Lecture hours, T = Tutorial hours, P = Practical hours) Credits: 4 Course Prerequisite: Optimization, Data Mining

Course Outcomes:

After completing this Course (or unit of a course) the students should be able to:
CO1: Appraise the scope and process of Business Analytics. (Cognitive Level :Understand)
CO2: Interpret Trendlines and Regression. (Cognitive Level :Understand)
CO3: Compare linear and non-linear optimization. (Cognitive Level :Evaluate)
CO4: Assess the different forecasting models. (Cognitive Level :Analyze)
CO5: Formulate decision problems and decision strategies. (Cognitive Level :Analyze)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

I														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	-	2	-	-	-	1	-	-	-	1	2	1
CO2	1	2	-	2	-	-	-	-	-	-	-	-	1	1
CO3	1	2	-	2	-	-	-	-	-	-	-	-	1	1
CO4	1	2	-	2	-	-	-	-	-	-	-	-	2	1
CO5	1	3	-	2	-	-	-	-	-	-	2	-	1	1

Each Course Outcome (CO) may be mapped with one or more Program Outcomes (POs). Write '3' in the box for 'High-level'mapping, 2 for 'Medium-level'mapping, 1 for 'Low'-level'mapping.

Unit wise Syllabus

<u>Unit – I: Business Analytics</u>

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organisation, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling and estimation methods overview.

Unit – II: Trendiness & Regression Analysis

Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytic Technology. <u>Unit – III: Business Analytics</u> 8 Hours

8 Hours

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

Unit – IV: Forecasting Techniques

8 Hours

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.

Unit – V: Decision Analysis

6 Hours

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making. <u>Unit – VI: Recent Trends</u> 6 Hours

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism.

Text/ Reference Books:

- Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FT Press.
- Business Analytics by James Evans, persons Education.

Teaching-Learning Strategies in brief

- 1. Provide visuals, illustrations, explanations etc.
- 2. Provide basic and advanced knowledge about the subject.
- **3.** Encourage the students to ask more & more questions.
- 4. Motivate the students to develop critical & strategic thinking

- 1. Sessional examination (2 Nos.)
- 2. Assignments.
- 3. Class tests
- 4. Semester examination
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Name of the Academic Program: M. Tech. (CSE) with specialization in Data Sciences **Course Code:** MTDS OE312 Title of the Course: Block Chain Design and Their Use Cases L-T-P: 3-1-0 Credit: 4 (L = Lecture hours, T = Tutorial hours, P = Practical hours)Course Prerequisite: Data Structure, Compiler Design, Theory of Computation

COURSE OUTCOMES:

CO-1: To impart knowledge on different facets and aspects of engineering systems safety, focusing on tools, techniques and methodologies. (Cognitive Level :Understand)

CO-2: Capable to identifying problems on which blockchains could be applied. (Cognitive Level :Apply)

CO-3: Introduce the concept and the basics of blockchain technologies. (Cognitive Level :Understand)

CO-4: Enable awareness on the different generations of blockchains. (Cognitive Level :Analyze) **CO-5:** Provide knowledge on various applications of blockchain technologies. (Cognitive Level :Understand)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific **Outcomes (PSOs)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	1		3		1		1	2		3	3
CO2	3	3	1	1	2	1		2		2	1		2	2
CO3	2	3	2	2		2	1	3	1	1	1	1	2	2
CO4	3	2	2	2	1	2			2	3			3	1
CO5	1	2	1	2		3		2		1	2		3	3

3-High Level, 2-Medium Level, 1-Low Level

Unitwise Syllabus

Unit – I: Introduction

Blockchain history, basics, architectures, Types of blockchain, Base technologies - Dockers, Hash function, Digital Signature - ECDSA, Zero Knowledge Proof.

Unit – II: Bitcoins

Fundamentals, aspects of bitcoins, properties of bitcoins, bitcoin transactions, bitcoin

<u>Unit – III: P2P networks</u>

Block generation at bitcoins, consensus algorithms- Proof of Work, Proof of Stake, Proof of Burn.

8 hours

8 hours

8 hours

Unit – IV: Blockchain hyperledger

Fabric architecture, implementation, networking, fabric transactions, demonstration, smart contracts.

<u> Unit – V: Applications</u>

8 hours

8 hours

Blockchain applications, e-governance, smart cities, smart industries, anomaly detections, use cases, trends on Blockchains, serverless blocks, scalability issues, blockchain on clouds.

Text/ Reference Books:

- Baxv Kevin Werbach, The Blockchain and the new architecture of Trust, MIT Press, 2018
- Joseph J. Bambara and Paul R. Allen, Blockchain A practical guide to developing business, law, and technology solutions, McGraw Hill, 2018.
- Joseph J. Bambara and Paul R. Allen, Blockchain, IoT, and AI: Using the power of three to develop business, technical, and legal solutions, Barnes & Noble publishers, 2018.
- Melanie Swan, Blockchain Blueprint for a new economy, OReilly publishers, 2018. Page 19 of 23
- Jai Singh Arun, Jerry Cuomo, Nitin Gaur, Blockchain for Business, Pearson publishers, 2019.
- Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System.

Teaching-Learning Strategies in brief (4 to 5 sentences)

- 1. Learning through discussion among the peer group
- 2. Learning through Case Studies
- 3. Open ended questions by teacher
- 4. Open ended questions from students
- 5. Preparation of question bank by students at various cognitive level

Assessment methods and weightages in brief (4 to 5 sentences)

- 1. time-constrained examinations;
- 2. closed-book and open-book tests;
- 3. individual project reports(case-study reports)
- 4. viva voce interviews
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Name of the Academic Program: M. Tech. (CSE) with specialization in *Data Sciences* Course Code: MTDS OE313

Title of the Course: Operation Research

L-T-P: 3-1-0 Credit:4

(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Course Prerequisite: Data Structure, Compiler Design, Theory of Computation

Course Outcomes

At the end of the course, the student should be able to

CO-1: Students should able to apply the dynamic programming. (Cognitive Level :Apply)

CO-2: Problems of discreet and continuous variables. (Cognitive Level :Understand)

CO-3: Students should able to apply the concept of non-linear programming. (Cognitive Level :Apply)

CO-4: Students should able to carry out sensitivity analysis. (Cognitive Level :Analyze) **CO-5:** Student should able to model the real world problem and simulate it. (Cognitive Level :Understand)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	1		3		1		1	2		3	3
CO2	3	2	1	1	2	2		2		1	1	1	2	2
CO3	2	3	2	2		2	1		1	1	1		2	2
CO4	3	2	1	2		2			2	3	1		3	3
CO5	3	2	1	2		3		2		1	2	1	3	3

3-High Level, 2-Medium Level, 1-Low Level

Unit wise Syllabus

Unit – I: Optimization Techniques

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

<u> Unit – II: Formulation of LPP</u>

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Unit – III: Nonlinear Programming Problem

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit – IV: Scheduling & Sequencing

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

6 Hours

8 Hours

8 Hours

Page 70

<u> Unit – V: Competitive Models</u>

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation.

<u>Unit – VI: Transportation Problem</u>

Introduction, Formulation of Transportation Problem (TP), Transportation Algorithm (MODI Method), the Initial Basic Feasible Solution, Moving Towards Optimality.

Reference Books:

- H.A. Taha, Operations Research, An Introduction, PHI, 2008
- H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
- Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- Pannerselvam, Operations Research: Prentice Hall of India 2010
- Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

Teaching-Learning Strategies in brief (4 to 5 sentences)

- 1. Learning through discussion among the peer group
- 2. Learning through Case Studies
- 3. Open ended questions by teacher
- 4. Open ended questions from students
- 5. Preparation of question bank by students at various cognitive level

Assessment methods and weightages in brief (4 to 5 sentences)

- 1. time-constrained examinations;
- 2. closed-book and open-book tests;
- 3. individual project reports(case-study reports)
- 4. viva voce interviews
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

8 Hours

Name of the Academic Program: M. Tech. (CSE) with specialization in Data SciencesCourse Code: MTDS OE314Title of the Course: Cost Management of Engineering ProjectsL-T-P: 3-1-0Credit:4(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Course Outcomes

CO-1: Identify and use the tools and techniques of project management. (Cognitive Level :Remember)

CO-2: Effectively use project reporting tools and techniques. (Cognitive Level : Analyze)

CO-3: Understand the importance of risk, cost, schedule and resource control and management of a project. (Cognitive Level :Understand)

CO-4: Understand the need for effective project management skills, training and the specific training needs of project managers. (Cognitive Level :Understand)

CO-5: Demonstrate an understanding of the role of Project Management vs. Functional Management. Write clear goal and objective statements and establish measurable criteria for project success. (Cognitive Level :Evaluate)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	3	2	1	1	3		1	3	3
CO2	3	3	3	3	3	3	2	1	1	3	1		2	1
CO3	3	3	3	3	3	3	2	1	1	3		1	2	2
CO4	3	3	3	3	3	3	2	1	1	3			1	2
CO5	3	3	3	3	3	3	2	1	1	3	1		3	3

Each Course Outcome (CO) may be mapped with one or more Program Outcomes (POs). Write '3' in the box for 'High-level'mapping, 2 for 'Medium-level'mapping, 1 for 'Low'-level'mapping.

Unit wise Syllabus

8 Hours

8 Hours

8 Hours

Introduction and Overview of the Strategic Cost Management Process, Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

<u>Unit-II</u>

Unit-I

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non technical activities. Detailed Engineering activities. Pre project execution main clearances and documents.

<u>Unit-III</u>

Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.

<u>Unit-IV</u>

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis.

<u>Unit-V</u>

Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

<u>Unit-VI</u>

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

Reference Books:

- Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- Charles T. Horngren and George Foster, Advanced Management Accounting
- Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

Teaching-Learning Strategies in brief (4 to 5 sentences)

- 1. Learning through discussion among the peer group
- 2. Learning through Case Studies
- 3. Open ended questions by teacher
- 4. Open ended questions from students
- 5. Preparation of question bank by students at various cognitive level

Assessment methods and weightages in brief (4 to 5 sentences)

- 1. time-constrained examinations;
- 2. closed-book and open-book tests;
- 3. individual project reports(case-study reports)
- 4. viva voce interviews
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Page 73

8 Hours

8 Hours

6 Hours

Name of the Academic Program: M. Tech. (CSE) with specialization in Data SciencesCourse Code: MTDS OE315Title of the Course: IoT Fundamentals and ArchitectureL-T-P: 3-1-0Credit:4(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Course Outcome:

CO1: Identify the IoT networking components with respect to OSI layer. (Cognitive Level :Understand)

CO2: Build schematic for IoT solutions. (Cognitive Level :Create)

CO3: Design and develop IoT based sensor systems. (Cognitive Level :Analyze)

CO4: Select IoT protocols and software. (Cognitive Level :Create)

CO5: Evaluate the wireless technologies for IoT. (Cognitive Level :Evaluate)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1		3				1	1	1	3	3
CO2	3	2	1	1	2	2	1	2		1	1		2	2
CO3	2	3	1	2		2			1	1	2	1	2	2
CO4	3	2	1	2		2				3	2		3	3
CO5	3	3	1	2		3				1	2		3	3
CO6	3	2	1	2		2				3	2		3	3

Each Course Outcome (CO) may be mapped with one or more Program Outcomes (POs). Write '3' in the box for 'High-level'mapping, 2 for 'Medium-level'mapping, 1 for 'Low'-level'mapping.

Detailed Syllabus

Unit 1: Evolution of IoT

Review of computer communication concepts (OSI layers, components, packet communication, Networks, TCP-IP, subnetting,IPV4 addressing and challenges). IPV6 addressing. IoT architecture reference layer.

Unit 2: Introduction to IoT components

Characteristics IoT sensor nodes, Edge computer, cloud and peripheral cloud, single board computers, open source hardwares, Examples of IoT infrastructure

Unit 3: IoT protocols and softwares

MQTT, UDP, MQTT brokers, publish subscribe modes, HTTP, COAP,XMPP and gateway protocols,

Unit 4: IoT point to point communication technologies

IoT Communication Pattern, IoT protocol Architecture, Selection of Wireless technologies (6LoWPAN, Zigbee, WIFI, BT, BLE, SIG, NFC, LORA, Lifi, Widi)

Unit 5: Introduction to Cloud computation and Big data analytics6 hoursEvolution of Cloud Computation, Commercial clouds and their features, open source IoTplatforms, cloud dashboards, Introduction to big data analytics and Hadoop.

8 hours

8 hours

8 hours

Unit 6: IoT security, IoT application and its Variants

10 hours

Need for encryption, standard encryption protocol, light weight cryptography, Quadruple Trust Model for IoT-A – Threat Analysis and model for IoT-A, Cloud security Case studies: IoT for smart cities, health care, agriculture, smart meters.M2M, Web of things, Cellular IoT, Industrial IoT, Industry 4.0, IoT standards.

Reference Books:

1. Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014.

2. Peter Waher, "Learning Internet of Things", PACKT publishing, BIRMINGHAM – MUMBAI

3. Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", ISBN 978-3-642-19156-5 e-ISBN 978-3-642-19157-2, Springer

4. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", ISBN: 978-1-118-47347-4, Willy Publications

5. Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-onApproach)", 1 st Edition, VPT, 2014.

6. http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html

Teaching-Learning Strategies in brief

- **1.** Build positive environment in the classroom.
- 2. Provide concrete basic and advanced knowledge of the subject.
- 3. Solve problems based on the basic & advanced concepts of the subject.
- 4. Encourage to the students to ask more & more questions.
- 5. Motivate to the students to develop critical & strategic thinking

Assessment methods and weightages in brief

- 1. By taking two sessional examinations.
- 2. By giving assignments.
- 3. By conducting class tests.
- 4. By taking semester examination.
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Name of the Academic Program: M. Tech. (CSE) with specialization in *Data Sciences* Course Code: MTDS OE316

Title of the Course: Numerical Methods

L-T-P: 3-1-0 Credit:4

(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Course Outcomes:

CO1: Solve first and second order ordinary differential equation arising in flow problems using single step numerical methods. (Cognitive Level :Analyze)

CO2: Determine the externals of functional and solve the simple problems of the

Calculus of variations. (Cognitive Level :Understand)

CO3: Solve the mathematical formulation of linear programming problem. (Cognitive Level :Analyze)

CO4: Solve the applications of transport problems and theory of games. (Cognitive Level :Analyze)

CO5: Fit a suitable curve by the method of least squares and determine the lines of regression for a set of statistical data. (Cognitive Level :Evaluate)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2			1				1	1	
CO2	3	3	3	1	2		1		2		1		1	1
CO3	2	3	2	1	2					1	1		1	
CO4	3	2	3	2	2	1							1	1
CO5	3	3	2	1	-								1	

Each Course Outcome (CO) may be mapped with one or more Program Outcomes (POs). Write '3' in the box for 'High-level'mapping, 2 for 'Medium-level'mapping, 1 for 'Low'-level'mapping.

Detailed Syllabus:

UNIT I:

Errors in Numerical Methods

Approximate numbers and Significant figures; Rouding-off numbers; Errors: Absolute, Relative and Percentage; Error in Arithmetical operations; A General Error Formula; Errors in Numerical Computations; Inverse Problems.

Solution of equations in one variable

Bisection method; Iteration method; Regula-Falsi method; Convergence of Regula-Falsi method; Secant method; Newton-Raphson method; Generalised Method for multiple roots; Rate of Convergence of Newton's square root formula; Newton's Inverse formula; Graffe's Root-Squaring method; Ramanujan's method; Rate of Convergence and. Computer Programmes for the above methods;

UNIT II:

Numerical solution of system of equations

Gauss elimination method; Gauss-Jordan method; Jacobi's iteration method; Gauss Sidel method; Error analysis; Computer programs based for the above methods.

(8 Hours)

(10 Hours)

Operators and Difference Equations

Forward difference operator, Backward difference operator, Shift operator, Average operator, Central difference operator and their relations; Factorial Notation; Synthetic division; Missing Term Technique; Basic ideas of Difference Equations.

UNIT III:

Interpolation Newton's forward interpolation formula; Newton's backward interpolation formula; Stirling's

Formula; Bessel formula; Lagrange's interpolation formula; Divided differences; Newton's divided difference formula; Numerical differentiation and applications; Central Difference Interpolation Formulae; Gauss' Forward central Difference Formula; Gauss' Backward central Difference Formula; Computer Programs for the above formulas.

UNIT IV:

Numerical integration

A general quadrature formula for equidistant nodes; Trapezoidal rule; Simpson's one-third rule, Simpson's three-eight rule; Wedddle's rule; Inherent errors in numerical integrations; Newton-Cotes quadrature formula; Euler-Maclaurin formula; Gaussian quadrature formula; Flow charts, Algorithms and Computer Programs to implement the above techniques. (8 Hours)

UNIT V:

Numerical Methods of Solution of O.D.E, Picard's Method of Successive Approximations; Picard's Method for Simultaneous First Order Differential Equations; Euler's Method;; Modified Euler's Method; Runge-Kutta method; Flow-charts, algorithms and computer programs for the above methods.

Reference Books:

1. B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43rd Edition, 2013.

2. S. D. Sharma, "Operations Research", Kedar Nath and Ram Nath Publishers, Seventh Revised Edition 2014.

3. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th edition, 2014.

4. Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.

5. Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, 8th Edition

Teaching-Learning Strategies in brief

- 1. Build positive environment in the classroom.
- 2. Provide concrete basic and advanced knowledge of the subject.
- 3. Solve problems based on the basic & advanced concepts of the subject.
- 4. Encourage to the students to ask more & more questions.
- 5. Motivate to the students to develop critical & strategic thinking

Assessment methods and weightages in brief

- 1. By taking two sessional examinations.
- 2. By giving assignments.
- **3.** By conducting class tests.
- 4. By taking semester examination.
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

(8 Hours)

(10 Hours)

AUDIT COURSE

Name of the Academic Program: M. Tech. (CSE) with specialization in *Data Sciences* Course Code: MTDS AC111

Title of the Course: English for Research Paper Writing

L-T-P: 2-0-0 Credit:0

(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Course Outcomes:

After completing this Course (or unit of a course) the students should be able to:

CO1: Appraise the different aspects of Planning and Preparation involved in writing research papers. (Cognitive Level :Understand)

CO2: Interpret and highlight the key findings. (Cognitive Level :Remember)

CO3: Compare and describe various sections of a research paper. (Cognitive Level :Understand) CO4: Assess the skills needed to write various sections of a research paper. (Cognitive Level :Create)

CO5: Evaluate the usefulness of different types of phrases in the context of research paper writing. (Cognitive Level :Evaluate)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific **Outcomes (PSOs)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	-	-	-	2	1	1	1	3	1	3		-	1
CO2	-	-	-	1	-	1		2	3	-	3		1	2
CO3	-	-	1	-	-	-		-	3	-	3		-	-
CO4	-	1	-	-	-	-	1	-	3	-	3	1	-	-
CO5	-	-	-	-	-	-		-	3	-	3		-	-

Unit wise Syllabus

Unit – I: Planning and Preparation

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness Unit – II: Plagiarism 6 hours

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit – III: Review Study

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. <u>Unit – IV: Writing Skill</u> 6 hours

JH/CSE/AICTE/CBCS/MTCSE-DS/2022-23

8 hours

Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

<u>Unit – V: Writing Skill-II</u>

6 hours

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions

<u> Unit – VI: Quality Assurance</u>

6 hours

Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

Text/ Reference Books:

- Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- Sahni, Pardeep Et. Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- Goel S. L., Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi

Teaching-Learning Strategies in brief (4 to 5 sentences)

- 1. Learning through discussion among the peer group
- 2. Learning through Case Studies
- 3. Open ended questions by teacher
- 4. Open ended questions from students
- 5. Preparation of question bank by students at various cognitive level

Assessment methods and weightages in brief (4 to 5 sentences)

- 1. time-constrained examinations;
- 2. closed-book and open-book tests;
- 3. individual project reports(case-study reports)
- 4. viva voce interviews
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Name of the Academic Program: M. Tech. (CSE) with specialization in Data SciencesCourse Code: MTDS AC112Title of the Course: Disaster ManagementL-T-P: 2-0-0Credit:0(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Course Outcomes:

Students will be able to:

CO-1: Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response. (Cognitive Level :Understand)

CO-2: Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. (Cognitive Level :Evaluate)

CO-3: Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations. (Cognitive Level :Understand)

CO-4: Critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries. (Cognitive Level :Understand)

CO-5: Critically understand the strengths and weaknesses of disaster management in their home country or the countries they work in. (Cognitive Level :Apply)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	1		3		1		1			3	3
CO2	3	3	1	1	2	1		2		2	1	1	2	2
CO3	2	3	2	2		2	1	3	1	1	1		2	2
CO4	3	2	2	2	1	2			2	3			3	1
CO5	1	2	1	2		3		2		1		1	3	3

3-High Level, 2-Medium Level, 1-Low Level

Unit wise Syllabus

<u> Unit – I: Introduction</u>

Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.

Unit – II: Repercussions of Disasters and Hazards

Economic Damage, Loss Of Human And Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts. <u>Unit – III: Disaster Prone Areas In India</u> 8 hours

6 hours

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post Disaster Diseases And Epidemics

<u>Unit – IV: Disaster Preparedness And Management</u>

Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

Unit – V: Risk Assessment

Disaster Risk: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Assessment. Strategies for Survival.

<u>Unit – VI: Disaster Mitigation</u>

Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.

Text/ Reference Books:

- R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- Sahni, Pardeep Et.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- Goel S. L., Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi.

Teaching-Learning Strategies in brief (4 to 5 sentences)

- 1. Learning through discussion among the peer group
- 2. Learning through Case Studies
- 3. Open ended questions by teacher
- 4. Open ended questions from students
- 5. Preparation of question bank by students at various cognitive level

Assessment methods and weightages in brief (4 to 5 sentences)

- 1. time-constrained examinations;
- 2. closed-book and open-book tests;
- 3. individual project reports(case-study reports)
- 4. viva voce interviews
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

6 hours

6 hours

JH/CSE/AICTE/CBCS/MTCSE-DS/2022-23

Unit – IV: Professional Development

Course Outcomes: CO-1: The course imparts knowledge of pedagogical practices being used by teachers in formal and informal classrooms. (Cognitive Level :Understand)

Course Code: MTDS AC113

L-T-P: 2-0-0

Title of the Course: Pedagogy Studies

Credit:0 (L = Lecture hours, T = Tutorial hours, P = Practical hours)

CO-2: Evidence on the effectiveness of pedagogical practices. (Cognitive Level :Remember)

Name of the Academic Program: M. Tech. (CSE) with specialization in Data Sciences

CO-3: Identify critical evidence gaps to guide the development. (Cognitive Level :Understand)

CO-4: Appraise the different aspects of Planning and Preparation involved in writing research papers. (Cognitive Level :Create)

CO-5: Interpret and highlight the key findings. (Cognitive Level :Understand)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and **Program Specific Outcomes (PSOs)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	1		3		1		1			3	3
CO2	3	3	1	1	2	1		2		2	1	1	2	2
CO3	2	3	2	2		2	1	3	1	1	1		2	2
CO4	3	2	2	2	1	2			2	3			3	1
CO5	1	2	1	2		3		2		1		1	3	3

3-High Level, 2-Medium Level, 1-Low Level

Unit wise Syllabus

<u>Unit – I: Introduction and Methodology</u>

Aims and rationale, Policy background, Conceptual framework and terminology Theories of learning, Curriculum, Teacher education.Conceptual framework, Research questions. Overview of methodology and Searching.

Unit – II: Thematic Overview

Thematic overview: Pedagogical practices are being used by teachers informal and informal classrooms in developing countries.Curriculum, Teacher education.

Unit – III: Pedagogical Practices

Evidence on the effectiveness of pedagogical practices Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy. Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

8 hours

Page 82

8 hours

8 hours

Professional development: alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community, Curriculum and assessment, Barriers to learning: limited resources and large class sizes

Unit – V: Future Directions

8 hours

Research gaps and future directions, Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

Text/ Reference Books:

- Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31(2):245-261.
- Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basi maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education.
- Oxford and Boston: Blackwell.
- Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

Teaching-Learning Strategies in brief (4 to 5 sentences)

- 1. Learning through discussion among the peer group
- 2. Learning through Case Studies
- 3. Open ended questions by teacher
- 4. Open ended questions from students
- 5. Preparation of question bank by students at various cognitive level

Assessment methods and weightages in brief (4 to 5 sentences)

- 1. time-constrained examinations;
- 2. closed-book and open-book tests;
- 3. individual project reports(case-study reports)
- 4. viva voce interviews
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Name of the Academic Program: M. Tech. (CSE) with specialization in Data SciencesCourse Code: MTDS AC221Title of the Course: Constitution of IndiaL-T-P: 2-0-0Credit:0(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Course Outcomes:

After completing this Course, the students should be able to

CO1. To give overview of Development of constitution of India. (Cognitive Level :Understand)

CO2. To Explain Schedule and sources of constitution of India. (Cognitive Level :Understand)

CO3. To discuss Citizenship Act, 1955. (Cognitive Level :Understand)

CO4. To highlight the Fundamental Rights. (Cognitive Level :Understand)

CO5. To make aware of Amendment of constitution. (Cognitive Level :Understand)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific

Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	3							1		2	3
CO2	3	2	2		2			2	2	3		1	2	3
CO3			2	3	2	1					1		3	
CO4					2				2	2	1	1	2	
CO5			2		3	2		2	2	3			3	

Each Course Outcome (CO) may be mapped with one or more Program Outcomes (POs). Write '3' in the box for 'High-level'mapping, 2 for 'Medium-level'mapping, 1 for 'Low'-level'mapping.

Unit wise Syllabus

<u> Unit – I: History of Making of the Indian Constitution</u>	6 hours
History, Drafting Committee, (Composition & Working)	
Unit – II: Philosophy of the Indian Constitution	6 hours

JH/CSE/AICTE/CBCS/MTCSE-DS/2022-23

Preamble, Salient Features

Unit – III: Contours of Constitutional Rights & Duties

Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

Unit – IV: Organs of Governance

Parliament, Composition, Qualifications and Disgualifications, Powers and Functions Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

Unit – V: Local Administration

District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Pachayati raj: Introduction, PRI: Zila Pachayat. Elected officials and their roles, CEO Zila Pachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy 6 hours

Unit – VI: Election Commission

Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

Text/ Reference Books:

- The Constitution of India, 1950 (Bare Act), Government Publication.
- Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Teaching-Learning Strategies in brief

- 1. Provide visuals, illustrations, explanations etc.
- 2. Provide basic and advanced knowledge about the subject.
- 3. Encourage the students to ask more & more questions.
- 4. Motivate the students to develop critical & strategic thinking

Assessment methods and weightages in brief

- 1. Sessional examination (2 Nos.)
- 2. Assignments.
- 3. Class tests
- 4. Semester examination
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

8 hours

8 hours

Page 85

JH/CSE/AICTE/CBCS/MTCSE-DS/2022-23

Name of the Academic Program: M. Tech. (CSE) with specialization in Data Sciences **Course Code:** MTDS AC222 Title of the Course: Value Education L-T-P: 2-0-0 Credit:0 (L = Lecture hours, T = Tutorial hours, P = Practical hours)

Course Outcomes: The course will be able to

CO-1: Help student understand value of education and self- development. (Cognitive Level :Understand)

CO-2: Imbibe good values in students. (Cognitive Level :Understand)

CO-3: Help students know about the importance of character. (Cognitive Level :Understand)

CO-4: To give students a deeper understanding about the purpose of life. (Cognitive Level :Understand)

CO-5: To teach and inculcate the essential qualities to become a good leader. (Cognitive Level :Understand)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific **Outcomes (PSOs)**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	1		3		1		1	1		3	3
CO2	3	2	1	1	2	2		2		1	1	1	2	2
CO3	2	3	2	2		2	1		1	1			2	2
CO4	3	2	1	2		2			2	3	1		3	3
CO5	3	2	1	2		3		2		1		1	3	3

3-High Level, 2-Medium Level, 1-Low Level

Unit wise Syllabus

Unit – I: Value & Self Development

Values and self-development – Social values and individual attitudes. Work ethics, Indian vision of humanism, Moral and non- moral valuation. Standards and principles. Value judgements

Unit – II: Cultivation of Values

Importance of cultivation of values, Sense of duty. Devotion, Self-reliance. Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity.

Patriotism. Love for nature, Discipline

Unit – III: Personality & Behaviour Development

Page 86

6 hours

8 hours

Confidence.

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self- estructive habits. Association and Cooperation, Doing best for saving nature

<u>Unit – IV: Character & Competence</u>

Character and Competence –Holy books vs Blind faith, Self-management and Good health, Science of reincarnation. Equality, Nonviolence, Humility, Role of Women.

All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively <u>Unit – V: Value Education towards National and Global Development</u> 6 hours Constitutional Values: Sovereign, Democracy, Socialism, Secularism, Equality, Justice, Liberty, Freedom, Fraternity, Social Values: Pity and Probity, Self-Control, Universal Brotherhood. Professional Values: Knowledge Thirst, Sincerity in Profession, Regularity, Punctuality, Faith. <u>Unit – VI: Religious, Moral Values, and Aesthetic Values:</u> 6 hours

Tolerance, Wisdom, character. Love and Appreciation of literature, fine arts and respect for the same.

Text/ Reference Books:

• Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

Teaching-Learning Strategies in brief

- 1. Provide visuals, illustrations, explanations etc.
- 2. Provide basic and advanced knowledge about the subject.
- 3. Encourage the students to ask more & more questions.
- 4. Motivate the students to develop critical & strategic thinking

Assessment methods and weightages in brief

- 1. Sessional examination (2 Nos.)
- 2. Assignments.
- 3. Class tests
- 4. Semester examination
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

Name of the Academic Program: M. Tech. (CSE) with specialization in *Data Sciences* Course Code: MTDS AC223

Title of the Course: Personality Development through Life Enlightenment Skills

L-T-P: 2-0-0 Credit:0

(L = Lecture hours, T = Tutorial hours, P = Practical hours)

Course Outcomes:

CO-1: To learn to achieve the highest goal happily. (Cognitive Level :Understand)

CO-2: To become a person with stable mind, pleasing personality and determination. (Cognitive Level :Understand)

CO-3: To awaken wisdom in students. (Cognitive Level :Remember)

CO-4: The course aims to cause a basic awareness about the significance of soft skills in professional and inter-personal communications. (Cognitive Level :Understand)

CO-5: It helps understand personality traits and formation and vital contribution in the world of business. (Cognitive Level :Remember)

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	1		3		1		1	1		3	3
CO2	3	2	1	1	2	2		2		1	1	1	2	2
CO3	2	3	2	2		2	1		1	1			2	2
CO4	3	2	1	2		2			2	3			3	3
CO5	3	2	1	2		3		2		1	1	1	3	3

3-High Level, 2-Medium Level, 1-Low Level

Unit wise Syllabus

Unit-I: Introduction to Personality Development

The concept of personality - Dimensions of personality – Theories of Freud & Erickson-Significance of personality development. The concept of success and failure: What is success? -Hurdles in achieving success - Overcoming hurdles - Factors responsible for success – What is failure - Causes of failure. SWOT analysis.

<u>Unit-II: Attitude</u>

Motivation Attitude - Concept - Significance - Factors affecting attitudes - Positive attitude – Advantages –Negative attitude- Disadvantages - Ways to develop positive attitude - Differences between personalities having positive and negative attitude. Concept of motivation - Significance – Internal and external motives - Importance of self- motivation- Factors leading to demotivation.

Unit-III: Stages of development

8 hours

6 hours

Freudian stages of development, Erik Erickson's stages of development. Maslow's hierarchy of needs.

<u> Unit – IV: Neetisatakam</u>

Neetisatakam-Holistic development of personality, Verses- 19,20,21,22 (wisdom), Verses- 29,31,32 (pride & heroism), Verses- 26,28,63,65 (virtue), Verses- 52,53,59 (dont's), Verses- 71,73,75,78 (do's)

<u>Unit – V: Approach to day to day work and duties</u>

Approach to day to day work and duties, Shrimad Bhagwad Geeta : Chapter 2-Verses 41, 47,48, Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,

Chapter 18-Verses 45, 46, 48.

Unit – VI: Statements of basic knowledge

Statements of basic knowledge, Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68 Chapter 12 -Verses 13, 14, 15, 16,17, 18, Personality of Role model. Shrimad Bhagwad Geeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39 Chapter18 – Verses 37,38,63

Reference Books:

- 1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi
- 2. "Srimad Bhagavad Gita" by Swami SwarupanandaAdvaita Ashram (Publication
- 3. Department), Kolkata
- 4. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath,
- 5. Rashtriya Sanskrit Sansthanam, New Delhi.

Teaching-Learning Strategies in brief

- 1. Provide visuals, illustrations, explanations etc.
- 2. Provide basic and advanced knowledge about the subject.
- 3. Encourage the students to ask more & more questions.
- 4. Motivate the students to develop critical & strategic thinking

Assessment methods and weightages in brief

- 1. Sessional examination (2 Nos.)
- 2. Assignments.
- 3. Class tests
- 4. Semester examination
- 5. Internal assessment (40 Marks) & Semester Examination (60 Marks) & Total Marks-100.

8 hours

6 hours